Respuesta:
[tex]108[/tex]
Explicación paso a paso:
Sistema de ecuaciones.
[tex]a+2b= 6[/tex]
[tex]ab = 3[/tex]
Por el método de Sustitución:
[tex]a+2b = 6[/tex] [tex]ecuac.1[/tex]
[tex]ab = 3[/tex] [tex]ecuac.2[/tex]
Despejamos " a " en la ecuac.1
[tex]a = 6-2b[/tex]
Sustituimos " a " en la ecuac.2
[tex]ab=3[/tex]
[tex](6-2b)b= 3[/tex]
[tex]6b - 2b^{2} = 3[/tex]
[tex]-2b^{2} +6b-3 = 0[/tex]
Aplicando la fórmula general:
[tex]b = \frac{-b\frac{+}{} \sqrt{b^{2} -4ac} }{2a} =\frac{-6\frac{+}{} \sqrt{6^{2} -4(-2)(-3)} }{2(-2)}=\frac{-6\frac{+}{}\sqrt{36-24} }{-4} =\frac{-6\frac{+}{} \sqrt{12} }{-4} =\frac{-6\frac{+}{} 2\sqrt{3} }{-4}[/tex]
[tex]b_{1} = \frac{-6+2\sqrt{3} }{-4} = \frac{3-\sqrt{3} }{2}[/tex] ; [tex]b_{2} = \frac{-6-2\sqrt{3} }{-4} = \frac{3+\sqrt{3} }{2}[/tex]
Sustituimos los valores de " b " en la ecuac.1
[tex]a_{1} = 6-2b_{1} = 6-2(\frac{3-\sqrt{3} }{2} ) =6-3+\sqrt{3} = 3+\sqrt{3}[/tex]
[tex]a_{2} = 6-2b_{2} =6 -2(\frac{3+\sqrt{3} }{2} ) = 6-3-\sqrt{3} = 3-\sqrt{3}[/tex]
[tex]Luego: a^{3} +8b^{3} = a_{1} ^{3} +8b_{1} ^{3} = (3+\sqrt{3} )^{3} +8(\frac{3-\sqrt{3} }{2} )^{3}[/tex]
[tex]= (3)^{3} +3(3)^{2} (\sqrt{3} )+3(3)(\sqrt{3} )^{2} +(\sqrt{3} )^{3} +[\frac{(3)^{3}-3(3)^{2}(\sqrt{3})+3(3)(\sqrt{3} )^{2} -(\sqrt{3} )^{3} }{(2)^{3} } ][/tex]
[tex]= 27+27\sqrt{3} +9(3) +3\sqrt{3} +8(\frac{27-27\sqrt{3} +9(3)-3\sqrt{3} }{8} )[/tex]
[tex]= 27+27\sqrt{3} +27+3\sqrt{3} +27-27\sqrt{3} +27-3\sqrt{3}[/tex]
[tex]= 108[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
[tex]108[/tex]
Explicación paso a paso:
Sistema de ecuaciones.
[tex]a+2b= 6[/tex]
[tex]ab = 3[/tex]
Por el método de Sustitución:
[tex]a+2b = 6[/tex] [tex]ecuac.1[/tex]
[tex]ab = 3[/tex] [tex]ecuac.2[/tex]
Despejamos " a " en la ecuac.1
[tex]a = 6-2b[/tex]
Sustituimos " a " en la ecuac.2
[tex]ab=3[/tex]
[tex](6-2b)b= 3[/tex]
[tex]6b - 2b^{2} = 3[/tex]
[tex]-2b^{2} +6b-3 = 0[/tex]
Aplicando la fórmula general:
[tex]b = \frac{-b\frac{+}{} \sqrt{b^{2} -4ac} }{2a} =\frac{-6\frac{+}{} \sqrt{6^{2} -4(-2)(-3)} }{2(-2)}=\frac{-6\frac{+}{}\sqrt{36-24} }{-4} =\frac{-6\frac{+}{} \sqrt{12} }{-4} =\frac{-6\frac{+}{} 2\sqrt{3} }{-4}[/tex]
[tex]b_{1} = \frac{-6+2\sqrt{3} }{-4} = \frac{3-\sqrt{3} }{2}[/tex] ; [tex]b_{2} = \frac{-6-2\sqrt{3} }{-4} = \frac{3+\sqrt{3} }{2}[/tex]
Sustituimos los valores de " b " en la ecuac.1
[tex]a = 6-2b[/tex]
[tex]a_{1} = 6-2b_{1} = 6-2(\frac{3-\sqrt{3} }{2} ) =6-3+\sqrt{3} = 3+\sqrt{3}[/tex]
[tex]a_{2} = 6-2b_{2} =6 -2(\frac{3+\sqrt{3} }{2} ) = 6-3-\sqrt{3} = 3-\sqrt{3}[/tex]
[tex]Luego: a^{3} +8b^{3} = a_{1} ^{3} +8b_{1} ^{3} = (3+\sqrt{3} )^{3} +8(\frac{3-\sqrt{3} }{2} )^{3}[/tex]
[tex]= (3)^{3} +3(3)^{2} (\sqrt{3} )+3(3)(\sqrt{3} )^{2} +(\sqrt{3} )^{3} +[\frac{(3)^{3}-3(3)^{2}(\sqrt{3})+3(3)(\sqrt{3} )^{2} -(\sqrt{3} )^{3} }{(2)^{3} } ][/tex]
[tex]= 27+27\sqrt{3} +9(3) +3\sqrt{3} +8(\frac{27-27\sqrt{3} +9(3)-3\sqrt{3} }{8} )[/tex]
[tex]= 27+27\sqrt{3} +27+3\sqrt{3} +27-27\sqrt{3} +27-3\sqrt{3}[/tex]
[tex]= 108[/tex]