Odpowiedź:
d)
[tex]( \frac{1}{3} {)}^{2} \times ( \frac{1}{9} {)}^{3} \div \frac{1}{27} = ( \frac{1}{3} {)}^{2} \times (( \frac{1}{3} {)}^{2} {)}^{3} \div ( { \frac{1}{3} )}^{3} = ( \frac{1}{3} {)}^{2} \times ( \frac{1}{3} {)}^{6} \div ( \frac{1}{3} {)}^{3} = ( \frac{1}{3} {)}^{2 + 6 - 3} = ( \frac{1}{3} {)}^{5} [/tex]
e)
[tex]3 \times {2}^{4} + {4}^{2} = 3 \times {2}^{4} + ( {2}^{2} {)}^{2} = 3 \times {2}^{4} + {2}^{4} = {2}^{4} (3 + 1) = {2}^{4} \times 4 = {2}^{4} \times {2}^{2} = {2}^{4 + 2} = {2}^{6} [/tex]
f)
[tex]7 \times {5}^{6} - 2 \times {25}^{3} = 7 \times {5}^{6} - 2 \times ( {5}^{2} {)}^{3} = 7 \times {5}^{6} - 2 \times {5}^{6} = {5}^{6} (7 - 2) = {5}^{6} \times 5 = {5}^{6 - 1} = {5}^{5} [/tex]
g)
[tex] \frac{( {2}^{3} {)}^{2} \times {3}^{3} + 15 \times {3}^{2} - 5 \times 27 }{ {3}^{3} \times 2 } = \frac{ {2}^{6} \times {3}^{3} + 5 \times 3 \times {3}^{2} - 5 \times {3}^{3} }{ {3}^{3} \times 2 } = \frac{ {2}^{6} \times {3}^{3} + 5 \times {3}^{3} - 5 \times {3}^{3} }{ {3}^{3} \times 2} = \frac{ {2}^{6} \times {3}^{3} }{ {3}^{3} \times 2 } = \frac{ {2}^{6} }{2} = {2}^{6 - 1} = {2}^{5} [/tex]
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
d)
[tex]( \frac{1}{3} {)}^{2} \times ( \frac{1}{9} {)}^{3} \div \frac{1}{27} = ( \frac{1}{3} {)}^{2} \times (( \frac{1}{3} {)}^{2} {)}^{3} \div ( { \frac{1}{3} )}^{3} = ( \frac{1}{3} {)}^{2} \times ( \frac{1}{3} {)}^{6} \div ( \frac{1}{3} {)}^{3} = ( \frac{1}{3} {)}^{2 + 6 - 3} = ( \frac{1}{3} {)}^{5} [/tex]
e)
[tex]3 \times {2}^{4} + {4}^{2} = 3 \times {2}^{4} + ( {2}^{2} {)}^{2} = 3 \times {2}^{4} + {2}^{4} = {2}^{4} (3 + 1) = {2}^{4} \times 4 = {2}^{4} \times {2}^{2} = {2}^{4 + 2} = {2}^{6} [/tex]
f)
[tex]7 \times {5}^{6} - 2 \times {25}^{3} = 7 \times {5}^{6} - 2 \times ( {5}^{2} {)}^{3} = 7 \times {5}^{6} - 2 \times {5}^{6} = {5}^{6} (7 - 2) = {5}^{6} \times 5 = {5}^{6 - 1} = {5}^{5} [/tex]
g)
[tex] \frac{( {2}^{3} {)}^{2} \times {3}^{3} + 15 \times {3}^{2} - 5 \times 27 }{ {3}^{3} \times 2 } = \frac{ {2}^{6} \times {3}^{3} + 5 \times 3 \times {3}^{2} - 5 \times {3}^{3} }{ {3}^{3} \times 2 } = \frac{ {2}^{6} \times {3}^{3} + 5 \times {3}^{3} - 5 \times {3}^{3} }{ {3}^{3} \times 2} = \frac{ {2}^{6} \times {3}^{3} }{ {3}^{3} \times 2 } = \frac{ {2}^{6} }{2} = {2}^{6 - 1} = {2}^{5} [/tex]
Odpowiedź:
Szczegółowe wyjaśnienie: