8)
[tex]|x^{2} -2x-5|=|x^{2} +1|\\x^{2} -2x-5=x^{2} +1\quad \lor\quad x^{2} -2x-5=-(x^{2} +1)\\-2x=6/:(-2)\qquad \quad \quad \lor\quad x^{2} -2x-5=-x^{2} -1\\x_1=-3\qquad \qquad \lor\qquad 2x^{2} -2x-4=0/:2\\x^{2} -x-2=0\qquad \Delta =9\quad \sqrt{\Delta } =3\\\displaystyle x_2=\frac{1+3}{2} =2\qquad x_3=\frac{1-3}{2} =-1\\\underline {x_1=-3\quad x_2=2\quad x_3=-1}[/tex]
9)
[tex]f(x)=x^{2} +(e+f)x+ef-2(e-f)^2\\\Delta=(e+f)^2-4(ef-2(e-f)^2)=e^2+2ef+f^{2} -4ef+8(e-f)^2=\\e^2-2ef+f^{2} +8(e-f)^2=(e-f)^2+8(e-f)^2=9(e-f)^2[/tex]
Dla dowolnego e,f∈R Δ≥0 ,co oznacza że funkcja ma co najmniej jedno miejsce zerowe
[tex]\sqrt{\Delta } =3|e-f|\\\displaystyle x_1=\frac{-e-f+3e-3f}{2} =e-2f\quad x_2=\frac{-e-f-3e+3f}{2} =f-2e\\f(x)=[x-(e-2f)][x-(f-2e)][/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
8)
[tex]|x^{2} -2x-5|=|x^{2} +1|\\x^{2} -2x-5=x^{2} +1\quad \lor\quad x^{2} -2x-5=-(x^{2} +1)\\-2x=6/:(-2)\qquad \quad \quad \lor\quad x^{2} -2x-5=-x^{2} -1\\x_1=-3\qquad \qquad \lor\qquad 2x^{2} -2x-4=0/:2\\x^{2} -x-2=0\qquad \Delta =9\quad \sqrt{\Delta } =3\\\displaystyle x_2=\frac{1+3}{2} =2\qquad x_3=\frac{1-3}{2} =-1\\\underline {x_1=-3\quad x_2=2\quad x_3=-1}[/tex]
9)
[tex]f(x)=x^{2} +(e+f)x+ef-2(e-f)^2\\\Delta=(e+f)^2-4(ef-2(e-f)^2)=e^2+2ef+f^{2} -4ef+8(e-f)^2=\\e^2-2ef+f^{2} +8(e-f)^2=(e-f)^2+8(e-f)^2=9(e-f)^2[/tex]
Dla dowolnego e,f∈R Δ≥0 ,co oznacza że funkcja ma co najmniej jedno miejsce zerowe
[tex]\sqrt{\Delta } =3|e-f|\\\displaystyle x_1=\frac{-e-f+3e-3f}{2} =e-2f\quad x_2=\frac{-e-f-3e+3f}{2} =f-2e\\f(x)=[x-(e-2f)][x-(f-2e)][/tex]