Odpowiedź:
[tex]|AB|=\sqrt{(14+1)^2+(9-1)^2} =\sqrt{15^2+8^2} =\sqrt{289} =17\\[/tex]
b)
[tex]\frac{1/(2+\sqrt{3} )}{2-\sqrt{3} /(2+\sqrt{3} )} =\frac{2+\sqrt{3} }{4-3} =2+\sqrt{3}[/tex]
[tex]A((2+\sqrt{3}) ,-5)\quad B(5+\sqrt{3} ,-2)\\|AB|=\sqrt{(5+\sqrt{3}-2-\sqrt{3} )^2+(-2+5)^2 } =\sqrt{3^2+3^3} =\sqrt{18} =3\sqrt{2}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]|AB|=\sqrt{(14+1)^2+(9-1)^2} =\sqrt{15^2+8^2} =\sqrt{289} =17\\[/tex]
b)
[tex]\frac{1/(2+\sqrt{3} )}{2-\sqrt{3} /(2+\sqrt{3} )} =\frac{2+\sqrt{3} }{4-3} =2+\sqrt{3}[/tex]
[tex]A((2+\sqrt{3}) ,-5)\quad B(5+\sqrt{3} ,-2)\\|AB|=\sqrt{(5+\sqrt{3}-2-\sqrt{3} )^2+(-2+5)^2 } =\sqrt{3^2+3^3} =\sqrt{18} =3\sqrt{2}[/tex]