Definicja logarytmu:
[tex]\log_ab=c\iff a^c=b\\\\a,b > 0\ \wedge\ a\neq1[/tex]
Twierdzenia:
[tex]\log_ab=\dfrac{\log_cb}{\log_ca}\\\\\log_ab^n=n\log_ab\\\\\log_aa=1\\\\a,b,c > 0\ \wedge\ a\neq1\ \wedge\ c\neq1[/tex]
1)
[tex]\log_ab=\dfrac{\log_bb}{\log_ba}=\dfrac{1}{\log_ba}\\\text{}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\blacksquare[/tex]
2)
[tex]\log_{a^2}b^2=\dfrac{\log_ab^2}{\log_aa^2}=\dfrac{2\log_ab}{2\log_aa}=\dfrac{\log_ab}{\log_aa}=\dfrac{\log_ab}{1}=\log_ab\\\\\text{}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\blacksquare[/tex]
3)
[tex]\log_{\frac{1}{a}}b=\dfrac{\log_ab}{\log_a\frac{1}{a}}=\dfrac{\log_ab}{\log_aa^{-1}}=\dfrac{\log_ab}{-\log_aa}=\dfrac{\log_ab}{-1}=-\log_ab}\\\\=\log_ab^{-1}=\log_a\dfrac{1}{b}\\\\\text{}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\blacksquare[/tex]
Założenia do każdego przykładu:
[tex]a,b > 0\ \wedge\ a\neq1\ \wedge\ b\neq1[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Logarytmy - dowody twierdzeń.
Definicja logarytmu:
[tex]\log_ab=c\iff a^c=b\\\\a,b > 0\ \wedge\ a\neq1[/tex]
Twierdzenia:
[tex]\log_ab=\dfrac{\log_cb}{\log_ca}\\\\\log_ab^n=n\log_ab\\\\\log_aa=1\\\\a,b,c > 0\ \wedge\ a\neq1\ \wedge\ c\neq1[/tex]
ROZWIĄZANIE:
1)
[tex]\log_ab=\dfrac{\log_bb}{\log_ba}=\dfrac{1}{\log_ba}\\\text{}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\blacksquare[/tex]
2)
[tex]\log_{a^2}b^2=\dfrac{\log_ab^2}{\log_aa^2}=\dfrac{2\log_ab}{2\log_aa}=\dfrac{\log_ab}{\log_aa}=\dfrac{\log_ab}{1}=\log_ab\\\\\text{}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\blacksquare[/tex]
3)
[tex]\log_{\frac{1}{a}}b=\dfrac{\log_ab}{\log_a\frac{1}{a}}=\dfrac{\log_ab}{\log_aa^{-1}}=\dfrac{\log_ab}{-\log_aa}=\dfrac{\log_ab}{-1}=-\log_ab}\\\\=\log_ab^{-1}=\log_a\dfrac{1}{b}\\\\\text{}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\blacksquare[/tex]
Założenia do każdego przykładu:
[tex]a,b > 0\ \wedge\ a\neq1\ \wedge\ b\neq1[/tex]