Odpowiedź:
1.
a = 6 b = 8 √ = 60°
więc z tw. kosinusów
c² = a² + b² - 2 a*b*cos √
c² = 6² + 8² - 2*6*8*cos 60° = 36 + 64 - 96*0,5 = 100 - 48 = 52 = 4*13
c = [tex]\sqrt{4*13} = 2\sqrt{13}[/tex]
Obwód Δ
L = a + b + c = 6 + 8 + 2[tex]\sqrt{13}[/tex] = 14 + 2[tex]\sqrt{13}[/tex]
====================================
Pole Δ
P = 0,5*6*8*sin 60° = 24*[tex]\frac{\sqrt{3} }{2} =[/tex] 12 [tex]\sqrt{3}[/tex] j²
2.
10² = 8² + 7² - 2*8*7*cos √
100 = 64 + 49 - 112*cos √
112 cos √ = 113 - 100 = 13
cos √ = [tex]\frac{13}{112}[/tex] > 0 ⇒ √ < 90°
Odp. Ten Δ jest ostrokątny.
=========================
7 < 8 < 10
α < β < √
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
1.
a = 6 b = 8 √ = 60°
więc z tw. kosinusów
c² = a² + b² - 2 a*b*cos √
c² = 6² + 8² - 2*6*8*cos 60° = 36 + 64 - 96*0,5 = 100 - 48 = 52 = 4*13
c = [tex]\sqrt{4*13} = 2\sqrt{13}[/tex]
Obwód Δ
L = a + b + c = 6 + 8 + 2[tex]\sqrt{13}[/tex] = 14 + 2[tex]\sqrt{13}[/tex]
====================================
Pole Δ
P = 0,5*6*8*sin 60° = 24*[tex]\frac{\sqrt{3} }{2} =[/tex] 12 [tex]\sqrt{3}[/tex] j²
====================================
2.
10² = 8² + 7² - 2*8*7*cos √
100 = 64 + 49 - 112*cos √
112 cos √ = 113 - 100 = 13
cos √ = [tex]\frac{13}{112}[/tex] > 0 ⇒ √ < 90°
Odp. Ten Δ jest ostrokątny.
=========================
7 < 8 < 10
α < β < √
Szczegółowe wyjaśnienie: