Odpowiedź:
x = 9
α² = [tex]\frac{( 4 - 9)^2 + ( 7 - 9)^2 + ( 5 - 9)^2 + ( 15 - 9)^2 + ( 10 - 9)^2 + ( a - 9)^2 + ( b - 9)^2 }{7}[/tex]
= [tex]\frac{25 + 4+ 16 + 36 + 1 + ( a - 9)^2 + ( b - 9)^2}{7} = \frac{82 + ( a -9)^2 + ( b - 9)^2}{7}[/tex]
Dla a = 9 oraz b = 13 mamy
α² = [tex]\frac{82 + 0^2 + 16}{7} = \frac{96}{7} = 14[/tex]
czyli α = [tex]\sqrt{\alpha ^2} = \sqrt{14}[/tex]
Odp. B a = 9, b = 13
=========================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
x = 9
więc
α² = [tex]\frac{( 4 - 9)^2 + ( 7 - 9)^2 + ( 5 - 9)^2 + ( 15 - 9)^2 + ( 10 - 9)^2 + ( a - 9)^2 + ( b - 9)^2 }{7}[/tex]
= [tex]\frac{25 + 4+ 16 + 36 + 1 + ( a - 9)^2 + ( b - 9)^2}{7} = \frac{82 + ( a -9)^2 + ( b - 9)^2}{7}[/tex]
Dla a = 9 oraz b = 13 mamy
α² = [tex]\frac{82 + 0^2 + 16}{7} = \frac{96}{7} = 14[/tex]
czyli α = [tex]\sqrt{\alpha ^2} = \sqrt{14}[/tex]
Odp. B a = 9, b = 13
=========================
Szczegółowe wyjaśnienie: