práctica, la arquitectura, en las mediciones astronómicas o en el diseño de aparatos, así como en las matemáticas, siendo claves en temas como el álgebra vectorial y la cinemática.
Características principales de un vector:
Magnitud. La magnitud es el fenómeno físico medible que se representa con el vector.
Cantidad. La cantidad, también conocida como intensidad o módulo, son las unidades de medidas representadas mediante la longitud del vector desde el punto de origen hasta la punta.
Espacio vectorial. También llamado espacio euclideo, es el tipo de plano cartesiano sobre el que se traza el vector y en el que se indica su dirección. Puede ser unidimensional (Eje X, recta numérica), bidimensional (Ejes XY, coordenadas cartesianas) y tridimensional (Ejes XYZ, trazo espacial).
Dirección. La dirección es la característica del vector que indica el plano sobre el que actúa la magnitud de la cual se está tratando. Puede ser en cualquiera de los planos Euclidianos tridimensionales (Ejes XYZ). Cuando se trata de magnitudes que actúan en una misma dirección, generalmente se representan sobre el eje horizontal del plano cartesiano (Eje X), usualmente representado como un segmento de recta numérica, y sobre el que se representan unos sobre otros, cada uno de los vectores.
Sentido. Como en la recta numérica, el sentido es determinado desde el punto de origen indicando en qué dirección se está aplicando la magnitud de que se trate. Cuando actúa en una sola dirección, (Eje X) el sentido se expresa en sentido positivo o negativo. Cuando actúa en dos planos (ejes X y Y), su sentido puede expresarse en forma de coordenadas de un plano cartesiano (XY), o bien, como movimientos en un sistema de coordenadas de puntos cardinales (norte, sur, nororiente), o bien, una combinación de ambos. En los casos de vectores tridimensionales, la dirección se indica del punto de origen al punto de llegada, con una representación de coordenada espacial (XYZ).
Punto de origen y extremo. El punto de origen, también llamado punto de aplicación o simplemente origen, es el punto a partir del cual se traza el vector, generalmente marcado con un punto o un pequeño círculo. El extremo es el final del trazo del vector, y se representa con la punta de una flecha.
Trazo. Un vector siempre se representa como un segmento de recta, que tiene su origen en el punto de aplicación y termina en el extremo.
Resultante. La resultante es el vector que se traza desde el punto de origen de un vector hasta el extremo del último vector trazado, cuando cada segmento representa la continuidad de una magnitud (como sucede en la representación de un móvil que cambia varias veces de dirección. En estos casos pueden sumarse vectores que van en una u otra dirección, y la resultante será la distancia total recorrida, que es el vector que se traza desde el punto de origen hasta el extremo
práctica, la arquitectura, en las mediciones astronómicas o en el diseño de aparatos, así como en las matemáticas, siendo claves en temas como el álgebra vectorial y la cinemática.
Características principales de un vector:Magnitud. La magnitud es el fenómeno físico medible que se representa con el vector.
Cantidad. La cantidad, también conocida como intensidad o módulo, son las unidades de medidas representadas mediante la longitud del vector desde el punto de origen hasta la punta.
Espacio vectorial. También llamado espacio euclideo, es el tipo de plano cartesiano sobre el que se traza el vector y en el que se indica su dirección. Puede ser unidimensional (Eje X, recta numérica), bidimensional (Ejes XY, coordenadas cartesianas) y tridimensional (Ejes XYZ, trazo espacial).
Dirección. La dirección es la característica del vector que indica el plano sobre el que actúa la magnitud de la cual se está tratando. Puede ser en cualquiera de los planos Euclidianos tridimensionales (Ejes XYZ). Cuando se trata de magnitudes que actúan en una misma dirección, generalmente se representan sobre el eje horizontal del plano cartesiano (Eje X), usualmente representado como un segmento de recta numérica, y sobre el que se representan unos sobre otros, cada uno de los vectores.
Sentido. Como en la recta numérica, el sentido es determinado desde el punto de origen indicando en qué dirección se está aplicando la magnitud de que se trate. Cuando actúa en una sola dirección, (Eje X) el sentido se expresa en sentido positivo o negativo. Cuando actúa en dos planos (ejes X y Y), su sentido puede expresarse en forma de coordenadas de un plano cartesiano (XY), o bien, como movimientos en un sistema de coordenadas de puntos cardinales (norte, sur, nororiente), o bien, una combinación de ambos. En los casos de vectores tridimensionales, la dirección se indica del punto de origen al punto de llegada, con una representación de coordenada espacial (XYZ).
Punto de origen y extremo. El punto de origen, también llamado punto de aplicación o simplemente origen, es el punto a partir del cual se traza el vector, generalmente marcado con un punto o un pequeño círculo. El extremo es el final del trazo del vector, y se representa con la punta de una flecha.
Trazo. Un vector siempre se representa como un segmento de recta, que tiene su origen en el punto de aplicación y termina en el extremo.
Resultante. La resultante es el vector que se traza desde el punto de origen de un vector hasta el extremo del último vector trazado, cuando cada segmento representa la continuidad de una magnitud (como sucede en la representación de un móvil que cambia varias veces de dirección. En estos casos pueden sumarse vectores que van en una u otra dirección, y la resultante será la distancia total recorrida, que es el vector que se traza desde el punto de origen hasta el extremo