Explicación paso a paso:
Términos similares
[tex]( {x}^{3} {y}^{2} )( - 6 - \frac{8}{3} ) + 7 {x}^{2} {y}^{3} - 9 + \frac{7}{4} \\ ( {x}^{3} {y}^{2} )( \frac{ - 18 - 8}{3} ) = ( {x}^{3} {y}^{2} )( \frac{ - 26}{3} ) = 8 \frac{2}{3} ( {x}^{3} {y}^{2} )[/tex]
Términos independientes
[tex] - \frac{ 9}{1} + \frac{7}{4} = \frac{ - 36 + 7}{4} = - \frac{29}{4} = - 7 \frac{1}{4} [/tex]
Suma total
[tex] - 8 \frac{2}{3} {x}^{3} {y}^{2} + 7 {x}^{2} {y}^{3} - 7 \frac{1}{4} \\ - 8.67 {x}^{3} {y}^{2} + 7 {x}^{2} {y}^{3} - 7.25[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Explicación paso a paso:
Términos similares
[tex]( {x}^{3} {y}^{2} )( - 6 - \frac{8}{3} ) + 7 {x}^{2} {y}^{3} - 9 + \frac{7}{4} \\ ( {x}^{3} {y}^{2} )( \frac{ - 18 - 8}{3} ) = ( {x}^{3} {y}^{2} )( \frac{ - 26}{3} ) = 8 \frac{2}{3} ( {x}^{3} {y}^{2} )[/tex]
Términos independientes
[tex] - \frac{ 9}{1} + \frac{7}{4} = \frac{ - 36 + 7}{4} = - \frac{29}{4} = - 7 \frac{1}{4} [/tex]
Suma total
[tex] - 8 \frac{2}{3} {x}^{3} {y}^{2} + 7 {x}^{2} {y}^{3} - 7 \frac{1}{4} \\ - 8.67 {x}^{3} {y}^{2} + 7 {x}^{2} {y}^{3} - 7.25[/tex]