Respuesta:
[tex]-\frac{x^{2} - 2a}{a(x+a)}[/tex]
Explicación paso a paso:
[tex]\frac{\frac{2}{x} -\frac{x}{a} }{1+\frac{a}{x} } =\frac{\frac{2a-x^{2} }{ax}}{\frac{x+a}{x} }=\frac{x(2a-x^{2}) }{ax(x+a) } =\frac{2a-x^{2} }{a(x+a) } =-\frac{x^{2} - 2a}{a(x+a)}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Respuesta:
[tex]-\frac{x^{2} - 2a}{a(x+a)}[/tex]
Explicación paso a paso:
[tex]\frac{\frac{2}{x} -\frac{x}{a} }{1+\frac{a}{x} } =\frac{\frac{2a-x^{2} }{ax}}{\frac{x+a}{x} }=\frac{x(2a-x^{2}) }{ax(x+a) } =\frac{2a-x^{2} }{a(x+a) } =-\frac{x^{2} - 2a}{a(x+a)}[/tex]