rogers
Tienes bastante información en algunos sitios y a lo mejor estas pidiendo un a síntesis que te oriente.
Comienza por considerar los errores de dos tipos: sistemáticos y aleatorios. Mira acá: http://newton.javeriana.edu.co/articulos... (muy simplificado pero buena orientación)
Algunos llaman a los aleatorios "errores estadísticos". Otros además incluyen un tipo de error "grosero" cuando algo sale de la lógica de la medición (por ejemplo un valor fuera del rango que mide el instrumento, o informar temperatura del agua a presión atmosférica = 130ºC, que es imposible porque a esa presión ya es vapor, etc. fueron errores de lectura o cálculo), un nombre más científico para estos errores "groseros" es el de errores ilegítimos o espurios.
Veo un excelente artículo en: http://www.fisicarecreativa.com/guias/ca...
Resumamos algunas cuestiones:
Errores según su carácter: a) Sistemáticos (o sesgo); b) Aleatorios o estadísticos (o fortuitos); c) ("Groseros") Ilegítimos o espurios.
Clasificación según su origen: a) Introducidos por el instrumento a1) error de apreciación a2) error de exactitud (Nota: leer antes las definiciones o conceptos de precisión y exactitud, que son distintos y se explican en el artículo)
b) Error de interacción c) Error de falta de definición en el objeto sujeto a medición (te doy un ejemplo que me pasa en estos días: queremos usar tiempos de procesamientos en mi empresa, pero no estaban bien definidos los métodos por escrito para este fin aunque sí la descripción que piden las normas ISO, y hay discrepancias porque se han medido los tiempos de procesos con distintos criterios, y ahora los estamos estandarizando)
Otra calsificación importante: a) absolutos b) relativos
Esto lo uso muchísimo en los cálculos, por ejemplo en física, si pongo g = 9.8 m/s² y en donde estoy es 9.81 m/s² el error absoluto es: ε = Δg = 0.01 m/s² (se expresa en la misma medida)
y el error relativo: ε%= Δg / g-real = 0.01 / 9.81 = 0.001, o sea 0.1% (muy bajo) y en este caso nos indica que no hay error serio en aproximar el valor de g a 9.8m/s². El error relativo pierde la unidad porque se compara la diferencia en esa unidad con la magnitud total en la misma unidad pasando a ser un porcentaje o una fracción adimensional.
Comienza por considerar los errores de dos tipos:
sistemáticos y aleatorios.
Mira acá:
http://newton.javeriana.edu.co/articulos...
(muy simplificado pero buena orientación)
Algunos llaman a los aleatorios "errores estadísticos". Otros además incluyen un tipo de error "grosero" cuando algo sale de la lógica de la medición (por ejemplo un valor fuera del rango que mide el instrumento, o informar temperatura del agua a presión atmosférica = 130ºC, que es imposible porque a esa presión ya es vapor, etc. fueron errores de lectura o cálculo), un nombre más científico para estos errores "groseros" es el de errores ilegítimos o espurios.
Veo un excelente artículo en:
http://www.fisicarecreativa.com/guias/ca...
Resumamos algunas cuestiones:
Errores según su carácter:
a) Sistemáticos (o sesgo);
b) Aleatorios o estadísticos (o fortuitos);
c) ("Groseros") Ilegítimos o espurios.
Clasificación según su origen:
a) Introducidos por el instrumento
a1) error de apreciación
a2) error de exactitud
(Nota: leer antes las definiciones o conceptos de precisión y exactitud, que son distintos y se explican en el artículo)
b) Error de interacción
c) Error de falta de definición en el objeto sujeto a medición (te doy un ejemplo que me pasa en estos días: queremos usar tiempos de procesamientos en mi empresa, pero no estaban bien definidos los métodos por escrito para este fin aunque sí la descripción que piden las normas ISO, y hay discrepancias porque se han medido los tiempos de procesos con distintos criterios, y ahora los estamos estandarizando)
Otra calsificación importante:
a) absolutos
b) relativos
Esto lo uso muchísimo en los cálculos, por ejemplo en física, si pongo g = 9.8 m/s² y en donde estoy es 9.81 m/s² el error absoluto es:
ε = Δg = 0.01 m/s² (se expresa en la misma medida)
y el error relativo:
ε%= Δg / g-real = 0.01 / 9.81 = 0.001, o sea 0.1% (muy bajo)
y en este caso nos indica que no hay error serio en aproximar el valor de g a 9.8m/s². El error relativo pierde la unidad porque se compara la diferencia en esa unidad con la magnitud total en la misma unidad pasando a ser un porcentaje o una fracción adimensional.