Respuesta:
[tex]\frac{50}{9}[/tex]
Explicación paso a paso:
[tex]Tan(\alpha )=\frac{Opuesto}{Adyacentes}=\frac{c}{b}[/tex]
[tex]Tan(\alpha )=\frac{9}{12}[/tex]
[tex]c=9 ; b= 12[/tex]
Encontramos el valor de " a " aplicando el teorema Pitágoras:
[tex]a^{2} =b^{2} +c^{2}[/tex]
[tex]a^{2} = (12)^{2} +(9)^{2}[/tex]
[tex]a^{2} =144+81 =225[/tex]
[tex]a^{2} =225[/tex]
[tex]a = \sqrt{225}[/tex]
[tex]a = 15[/tex]
[tex]Tg(O)=\frac{12}{9}[/tex]
[tex]Sen(\alpha ) =\frac{9}{15}[/tex]
Ahora encontramos:
[tex]\frac{2+tg(O)}{Sen(\alpha )} =\frac{2+\frac{12}{9} }{\frac{9}{15} } = \frac{\frac{18+12}{9} }{\frac{9}{15} } =\frac{\frac{30}{9} }{\frac{9}{15} }[/tex]
[tex]= \frac{15*30}{9*9} =\frac{450}{81}[/tex]
[tex]= \frac{50}{9}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Respuesta:
[tex]\frac{50}{9}[/tex]
Explicación paso a paso:
[tex]Tan(\alpha )=\frac{Opuesto}{Adyacentes}=\frac{c}{b}[/tex]
[tex]Tan(\alpha )=\frac{9}{12}[/tex]
[tex]c=9 ; b= 12[/tex]
Encontramos el valor de " a " aplicando el teorema Pitágoras:
[tex]a^{2} =b^{2} +c^{2}[/tex]
[tex]a^{2} = (12)^{2} +(9)^{2}[/tex]
[tex]a^{2} =144+81 =225[/tex]
[tex]a^{2} =225[/tex]
[tex]a = \sqrt{225}[/tex]
[tex]a = 15[/tex]
[tex]Tg(O)=\frac{12}{9}[/tex]
[tex]Sen(\alpha ) =\frac{9}{15}[/tex]
Ahora encontramos:
[tex]\frac{2+tg(O)}{Sen(\alpha )} =\frac{2+\frac{12}{9} }{\frac{9}{15} } = \frac{\frac{18+12}{9} }{\frac{9}{15} } =\frac{\frac{30}{9} }{\frac{9}{15} }[/tex]
[tex]= \frac{15*30}{9*9} =\frac{450}{81}[/tex]
[tex]= \frac{50}{9}[/tex]