Odpowiedź:
Szczegółowe wyjaśnienie:
Zadanie 5
Oblicz:
[tex]b) \ -1\frac{2}{3} +(-2\frac{1}{5} )=-1\frac{2}{3} -2\frac{1}{5}=-1\frac{10}{15}-2\frac{3}{15} =-3\frac{13}{15}[/tex]
[tex]d) \ -3\frac{6}{7} -(-1\frac{2}{3} )=-3\frac{6}{7}+1\frac{2}{3}=-3\frac{18}{21} +1\frac{14}{21} =-2\frac{4}{21}[/tex]
Zadanie 6
[tex]a) \ -3+\frac{2}{7} =-2\frac{7}{7} +\frac{2}{7} =-2\frac{5}{7}[/tex]
[tex]d) \ -2-(-1\frac{3}{4} )= -2+1\frac{3}{4} =-1\frac{4}{4} +1\frac{3}{4} =-\frac{1}{4}[/tex]
Zadanie 7
[tex]a) \ 2\frac{2}{3} +(-2,4)=2\frac{2}{3}-2,4=2\frac{2}{3}-2\frac{4}{10} =2\frac{20}{30} -2\frac{12}{30} =\frac{8}{30} =\frac{4}{15}[/tex]
[tex]b) \ -1\frac{1}{5} -(-2,7)=-1\frac{1}{5} +2,7=-1\frac{2}{10} +2,7=-1,2+2,7=1,5[/tex]
[tex]c) \ -1,2: (-2\frac{2}{5} )=-1,2:(-2\frac{4}{10} )=-1,2:(-2,4)=-12:(-24)=0,5[/tex]
[tex]d) \ -1\frac{1}{3} \cdot 0,5 = -1\frac{1}{3} \cdot \frac{5}{10} =-\frac{^2\not4}{3} \cdot \frac{5}{\not10_5} =-\frac{10}{15} =-\frac{2}{3}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Odpowiedź:
Szczegółowe wyjaśnienie:
Zadanie 5
Oblicz:
[tex]b) \ -1\frac{2}{3} +(-2\frac{1}{5} )=-1\frac{2}{3} -2\frac{1}{5}=-1\frac{10}{15}-2\frac{3}{15} =-3\frac{13}{15}[/tex]
[tex]d) \ -3\frac{6}{7} -(-1\frac{2}{3} )=-3\frac{6}{7}+1\frac{2}{3}=-3\frac{18}{21} +1\frac{14}{21} =-2\frac{4}{21}[/tex]
Zadanie 6
Oblicz:
[tex]a) \ -3+\frac{2}{7} =-2\frac{7}{7} +\frac{2}{7} =-2\frac{5}{7}[/tex]
[tex]d) \ -2-(-1\frac{3}{4} )= -2+1\frac{3}{4} =-1\frac{4}{4} +1\frac{3}{4} =-\frac{1}{4}[/tex]
Zadanie 7
Oblicz:
[tex]a) \ 2\frac{2}{3} +(-2,4)=2\frac{2}{3}-2,4=2\frac{2}{3}-2\frac{4}{10} =2\frac{20}{30} -2\frac{12}{30} =\frac{8}{30} =\frac{4}{15}[/tex]
[tex]b) \ -1\frac{1}{5} -(-2,7)=-1\frac{1}{5} +2,7=-1\frac{2}{10} +2,7=-1,2+2,7=1,5[/tex]
[tex]c) \ -1,2: (-2\frac{2}{5} )=-1,2:(-2\frac{4}{10} )=-1,2:(-2,4)=-12:(-24)=0,5[/tex]
[tex]d) \ -1\frac{1}{3} \cdot 0,5 = -1\frac{1}{3} \cdot \frac{5}{10} =-\frac{^2\not4}{3} \cdot \frac{5}{\not10_5} =-\frac{10}{15} =-\frac{2}{3}[/tex]