Odpowiedź w załączniku :)
[tex]|x^{2}-3x+2| > |x-1|[/tex]
sprowadzamy trójmian kwadratowy [tex]x^{2}-3x+2[/tex] do postaci iloczynowej:
[tex]\Delta = b^{2}-4ac = (-3)^{2}-4\cdot1\cdot2 = 9-8 = 1\\\\\sqrt{\Delta} = \sqrt{1} = 1\\\\x_1 = \frac{-b-\sqrt{\Delta}}{2a} = \frac{3-1}{2\cdot1} = \frac{2}{2} = 1\\\\x_2 = \frac{-b+\sqrt{\Delta}}{2a} = \frac{3+1}{2} = \frac{4}{2} = 2\\\\x^{2}-3x+2=(x-1)(x-2)\\\\|(x-1)(x-2)| > |x-1|\\\\|x-1}\cdot|x-2| > |x-1| \ \ \ \ \ \ Z: \ x \neq 1\\\\dla \ x = 1 \ mamy:\\0\cdot 1 > 0, \ sprzecznosc\\\\|x-2| > 1\\\\x-2 > 1 \ \ \vee \ \ x-2 < -1\\\\x > 3 \ \ \vee \ \ x < 1[/tex]
[tex]\boxed{x \in \ (-\infty:1) \ \cup \ (3;+\infty)}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Odpowiedź w załączniku :)
[tex]|x^{2}-3x+2| > |x-1|[/tex]
sprowadzamy trójmian kwadratowy [tex]x^{2}-3x+2[/tex] do postaci iloczynowej:
[tex]\Delta = b^{2}-4ac = (-3)^{2}-4\cdot1\cdot2 = 9-8 = 1\\\\\sqrt{\Delta} = \sqrt{1} = 1\\\\x_1 = \frac{-b-\sqrt{\Delta}}{2a} = \frac{3-1}{2\cdot1} = \frac{2}{2} = 1\\\\x_2 = \frac{-b+\sqrt{\Delta}}{2a} = \frac{3+1}{2} = \frac{4}{2} = 2\\\\x^{2}-3x+2=(x-1)(x-2)\\\\|(x-1)(x-2)| > |x-1|\\\\|x-1}\cdot|x-2| > |x-1| \ \ \ \ \ \ Z: \ x \neq 1\\\\dla \ x = 1 \ mamy:\\0\cdot 1 > 0, \ sprzecznosc\\\\|x-2| > 1\\\\x-2 > 1 \ \ \vee \ \ x-2 < -1\\\\x > 3 \ \ \vee \ \ x < 1[/tex]
[tex]\boxed{x \in \ (-\infty:1) \ \cup \ (3;+\infty)}[/tex]