Podstawiamy współrzędne punktów do podanego wzoru i rozwiązujemy powstały układ równań.
a)
[tex]\left\{\begin{aligned}&5=a+b\log 1\\&2=a+b\log 10\end{aligned}\right.\\\\\left\{\begin{aligned}&5=a+b\cdot 0\\&2=a+b\cdot 1\end{aligned}\right.\\\\\left\{\begin{aligned}&5=a\\&2=a+b\end{aligned}\right.\\\\\\2=5+b\\b=-3[/tex]
[tex](a,b)=(5,-3)[/tex]
b)
[tex]\left\{\begin{aligned}&6=a+b\log \dfrac{1}{10}\\&0=a+b\log 100\end{aligned}\right.\\\\\left\{\begin{aligned}&6=a+b\cdot (-1)\\&0=a+b\cdot 2\end{aligned}\right.\\\\\left\{\begin{aligned}&6=a-b\\&0=a+2b\end{aligned}\right.[/tex]
Odejmę pierwsze równanie od drugiego.
[tex]-6=3b\\b=-2\\\\6=a-(-2)\\6=a+2\\a=4[/tex]
[tex](a,b)=(4,-2)[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Podstawiamy współrzędne punktów do podanego wzoru i rozwiązujemy powstały układ równań.
a)
[tex]\left\{\begin{aligned}&5=a+b\log 1\\&2=a+b\log 10\end{aligned}\right.\\\\\left\{\begin{aligned}&5=a+b\cdot 0\\&2=a+b\cdot 1\end{aligned}\right.\\\\\left\{\begin{aligned}&5=a\\&2=a+b\end{aligned}\right.\\\\\\2=5+b\\b=-3[/tex]
[tex](a,b)=(5,-3)[/tex]
b)
[tex]\left\{\begin{aligned}&6=a+b\log \dfrac{1}{10}\\&0=a+b\log 100\end{aligned}\right.\\\\\left\{\begin{aligned}&6=a+b\cdot (-1)\\&0=a+b\cdot 2\end{aligned}\right.\\\\\left\{\begin{aligned}&6=a-b\\&0=a+2b\end{aligned}\right.[/tex]
Odejmę pierwsze równanie od drugiego.
[tex]-6=3b\\b=-2\\\\6=a-(-2)\\6=a+2\\a=4[/tex]
[tex](a,b)=(4,-2)[/tex]