Odpowiedź:
log2 4√2=c
[tex]2^{c} =4\sqrt{2} \\2^{c} =2^{2} *2^{1/2} \\2^{c} =2^{2+1/2} \\ 2^{c} =2^{2+0,5} \\2^{c}=2^{2,5} \\c=2,5[/tex]
c=2,5
odp: 2,5
[tex]\huge\boxed {~~loog_{2}4\sqrt{2} =2\frac{1}{2}~~ }[/tex]
Szczegółowe wyjaśnienie:
Korzystamy z definicji logarytmu:
Korzystamy ze wzorów:
Obliczamy:
[tex]log_{2}4\sqrt{2} =c\\\\2^{c}=4\sqrt{2} \\\\2^{c}=2^{2}\cdot 2^{\frac{1}{2} }\\\\2^{c}=2^{2+\frac{1}{2} }\\\\2^{c}=2^{2\frac{1}{2} }\\~~~~\Downarrow\\\\c=2\frac{1}{2} \\\\\huge\boxed {loog_{2}4\sqrt{2} =2\frac{1}{2} }[/tex]
[tex]log_{2}4\sqrt{2} =log_{2}(2^{2}\cdot 2^{\frac{1}{2} })=log_{2}(2^{2+\frac{1}{2} })=log_{2}2^{2\frac{1}{2} }=2\dfrac{1}{2} \cdot log_{2}2=2\dfrac{1}{2} \cdot 1=2\dfrac{1}{2}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
log2 4√2=c
[tex]2^{c} =4\sqrt{2} \\2^{c} =2^{2} *2^{1/2} \\2^{c} =2^{2+1/2} \\ 2^{c} =2^{2+0,5} \\2^{c}=2^{2,5} \\c=2,5[/tex]
c=2,5
odp: 2,5
Verified answer
Odpowiedź:
[tex]\huge\boxed {~~loog_{2}4\sqrt{2} =2\frac{1}{2}~~ }[/tex]
Szczegółowe wyjaśnienie:
Korzystamy z definicji logarytmu:
Korzystamy ze wzorów:
Obliczamy:
[tex]log_{2}4\sqrt{2} =c\\\\2^{c}=4\sqrt{2} \\\\2^{c}=2^{2}\cdot 2^{\frac{1}{2} }\\\\2^{c}=2^{2+\frac{1}{2} }\\\\2^{c}=2^{2\frac{1}{2} }\\~~~~\Downarrow\\\\c=2\frac{1}{2} \\\\\huge\boxed {loog_{2}4\sqrt{2} =2\frac{1}{2} }[/tex]
[tex]log_{2}4\sqrt{2} =log_{2}(2^{2}\cdot 2^{\frac{1}{2} })=log_{2}(2^{2+\frac{1}{2} })=log_{2}2^{2\frac{1}{2} }=2\dfrac{1}{2} \cdot log_{2}2=2\dfrac{1}{2} \cdot 1=2\dfrac{1}{2}[/tex]