Odpowiedź:
1 + 2 + 3 + ... + n = [tex]\frac{n*(n + 1)}{2}[/tex]
więc
[tex]\frac{n*(n + 1)*(2 n+ 1)}{6} - \frac{n*(n + 1)}{2} = \frac{n*(n + 1)*(2 n + 1)}{6} - \frac{n*(n +1)*3}{6} =[/tex]
[tex]= \frac{n*(n + 1)*[ 2 n + 1 - 3]}{6} = \frac{n*(n + 1)*(2 n - 2)}{6} = \frac{n*(n+1)*(n -1)}{3}=[/tex]
[tex]= \frac{n*(n^2 - 1)}{3}[/tex]
B.
====
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
1 + 2 + 3 + ... + n = [tex]\frac{n*(n + 1)}{2}[/tex]
więc
[tex]\frac{n*(n + 1)*(2 n+ 1)}{6} - \frac{n*(n + 1)}{2} = \frac{n*(n + 1)*(2 n + 1)}{6} - \frac{n*(n +1)*3}{6} =[/tex]
[tex]= \frac{n*(n + 1)*[ 2 n + 1 - 3]}{6} = \frac{n*(n + 1)*(2 n - 2)}{6} = \frac{n*(n+1)*(n -1)}{3}=[/tex]
[tex]= \frac{n*(n^2 - 1)}{3}[/tex]
B.
====
Szczegółowe wyjaśnienie: