Odpowiedź:
a) [tex]\frac{h}{x} = tg \beta[/tex] to h = x *tg [tex]\beta[/tex]
[tex]\frac{h}{20 + x} = tg \alpha[/tex] to h = ( 20 + x) *tg [tex]\alpha[/tex]
więc x*tg [tex]\beta = ( 20 + x) tg \alpha[/tex]
x *tg β - x *tg α = 20*tg α
x *( tg β - tg α ) = 20*tg α
x = [tex]\frac{20 tg \alpha }{tg \beta - tg \alpha }[/tex]
zatem h = x*tg β = [tex]\frac{20*tg \alpha *tg \beta }{tg \beta - tg \alpha }[/tex] oraz α = 15° β = 25°
Podstaw i oblicz.
b) α = 10° , β = 28°
Mamy
[tex]\frac{x}{40} = sin \beta[/tex] to x = 40*sin β
[tex]\frac{y}{40} = cos \beta[/tex] to y = 40* cos β
oraz
[tex]\frac{h + x}{y} = tg ( \alpha + \beta )[/tex] to h + x = y* tg (α + β )
h = y*tg ( α + β) - x = 40*cos β* tg ( α + β ) - 40 sin β
h = 40*[ cos β*tg ( α + β) - sin β ]
================================
Podstaw i oblicz,
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
a) [tex]\frac{h}{x} = tg \beta[/tex] to h = x *tg [tex]\beta[/tex]
[tex]\frac{h}{20 + x} = tg \alpha[/tex] to h = ( 20 + x) *tg [tex]\alpha[/tex]
więc x*tg [tex]\beta = ( 20 + x) tg \alpha[/tex]
x *tg β - x *tg α = 20*tg α
x *( tg β - tg α ) = 20*tg α
x = [tex]\frac{20 tg \alpha }{tg \beta - tg \alpha }[/tex]
zatem h = x*tg β = [tex]\frac{20*tg \alpha *tg \beta }{tg \beta - tg \alpha }[/tex] oraz α = 15° β = 25°
Podstaw i oblicz.
b) α = 10° , β = 28°
Mamy
[tex]\frac{x}{40} = sin \beta[/tex] to x = 40*sin β
[tex]\frac{y}{40} = cos \beta[/tex] to y = 40* cos β
oraz
[tex]\frac{h + x}{y} = tg ( \alpha + \beta )[/tex] to h + x = y* tg (α + β )
h = y*tg ( α + β) - x = 40*cos β* tg ( α + β ) - 40 sin β
h = 40*[ cos β*tg ( α + β) - sin β ]
================================
Podstaw i oblicz,
Szczegółowe wyjaśnienie: