Odpowiedź:
Prostokąt ma boki długości 8 i 12,5.
Szczegółowe wyjaśnienie:
x - długość pierwszego boku
y - długość drugiego boku
[tex]\left \{ {{x*y=100} \atop {2x+2y=41}} \right. \\\\\left \{ {{x*y=100} \atop {2y=41-2x\ |:2}} \right. \\\\\left \{ {{x*y=100} \atop {y=\frac{41}{2}-x}} \right. \\\\\left \{ {{x*\left(\frac{41}{2}-x\right)=100} \atop {y=\frac{41}{2}-x}} \right. \\\\\left \{ {{\frac{41}{2}x-x^2=100\ |*2} \atop {y=\frac{41}{2}-x}} \right. \\\\\left \{ {{41x-2x^2=200} \atop {y=\frac{41}{2}-x}} \right. \\\\\left \{ {{-2x^2+41x-200=0\ |*(-1)} \atop {y=\frac{41}{2}-x}} \right.[/tex]
[tex]\left \{ {{2x^2-41x+200=0} \atop {y=\frac{41}{2}-x}} \right. \\\\\Delta=(-41)^2-4*2*200=1681-1600=81\\\\\sqrt\Delta=9\\\\x_1=\frac{41-9}{2*2}=\frac{32}{4}=8\\\\x_2=\frac{41+9}{2*2}=\frac{50}{4}=12\frac{1}{2}\\\\\left \{ {{x=8} \atop {y=\frac{41}{2}-8}} \right. \quad\vee\quad \left \{ {{x=12\frac{1}{2}} \atop {y=\frac{41}{2}-12\frac{1}{2}}} \right. \\\\\left \{ {{x=8} \atop {y=20\frac{1}{2}-8}} \right. \quad\vee\quad \left \{ {{x=12\frac{1}{2}} \atop {y=20\frac{1}{2}-12\frac{1}{2}}} \right.[/tex]
[tex]\left \{ {{x=8} \atop {y=12\frac{1}{2}}} \right. \quad\vee\quad \left \{ {{x=12\frac{1}{2}} \atop {y=8}} \right.[/tex]
Odp: Prostokąt ma boki długości 8 i 12,5.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
Prostokąt ma boki długości 8 i 12,5.
Szczegółowe wyjaśnienie:
x - długość pierwszego boku
y - długość drugiego boku
[tex]\left \{ {{x*y=100} \atop {2x+2y=41}} \right. \\\\\left \{ {{x*y=100} \atop {2y=41-2x\ |:2}} \right. \\\\\left \{ {{x*y=100} \atop {y=\frac{41}{2}-x}} \right. \\\\\left \{ {{x*\left(\frac{41}{2}-x\right)=100} \atop {y=\frac{41}{2}-x}} \right. \\\\\left \{ {{\frac{41}{2}x-x^2=100\ |*2} \atop {y=\frac{41}{2}-x}} \right. \\\\\left \{ {{41x-2x^2=200} \atop {y=\frac{41}{2}-x}} \right. \\\\\left \{ {{-2x^2+41x-200=0\ |*(-1)} \atop {y=\frac{41}{2}-x}} \right.[/tex]
[tex]\left \{ {{2x^2-41x+200=0} \atop {y=\frac{41}{2}-x}} \right. \\\\\Delta=(-41)^2-4*2*200=1681-1600=81\\\\\sqrt\Delta=9\\\\x_1=\frac{41-9}{2*2}=\frac{32}{4}=8\\\\x_2=\frac{41+9}{2*2}=\frac{50}{4}=12\frac{1}{2}\\\\\left \{ {{x=8} \atop {y=\frac{41}{2}-8}} \right. \quad\vee\quad \left \{ {{x=12\frac{1}{2}} \atop {y=\frac{41}{2}-12\frac{1}{2}}} \right. \\\\\left \{ {{x=8} \atop {y=20\frac{1}{2}-8}} \right. \quad\vee\quad \left \{ {{x=12\frac{1}{2}} \atop {y=20\frac{1}{2}-12\frac{1}{2}}} \right.[/tex]
[tex]\left \{ {{x=8} \atop {y=12\frac{1}{2}}} \right. \quad\vee\quad \left \{ {{x=12\frac{1}{2}} \atop {y=8}} \right.[/tex]
Odp: Prostokąt ma boki długości 8 i 12,5.