Odpowiedź:
e ) = [tex]sin^6\alpha + ( 1 - sin^2\alpha )^3 + 3 sin^2\alpha *cos^2\alpha =[/tex]
= [tex]sin^6\alpha + 1 - 3*sin^2\alpha + 3 *sin^4\alpha - sin^6\alpha + 3 sin^2\alpha *cos^2\alpha =[/tex]
= 1 + [tex]3 sin^2\alpha *( cos^2\alpha - 1 + sin^2\alpha )[/tex] = 1
====================================
f ) = ( [tex]\frac{sin^2\alpha }{cos^2\alpha } + \frac{1}{sin^2\alpha } + 1 )* sin^2\alpha *cos^2\alpha =[/tex]
= [tex]sin^4\alpha + cos^2\alpha + sin^2\alpha *cos^2\alpha =[/tex]
= [tex]sin^2\alpha *(sin^2\alpha + cos^2\alpha ) + cos^2\alpha =[/tex]
= [tex]sin^2\alpha + cos^2\alpha = 1[/tex]
=====================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Odpowiedź:
e ) = [tex]sin^6\alpha + ( 1 - sin^2\alpha )^3 + 3 sin^2\alpha *cos^2\alpha =[/tex]
= [tex]sin^6\alpha + 1 - 3*sin^2\alpha + 3 *sin^4\alpha - sin^6\alpha + 3 sin^2\alpha *cos^2\alpha =[/tex]
= 1 + [tex]3 sin^2\alpha *( cos^2\alpha - 1 + sin^2\alpha )[/tex] = 1
====================================
f ) = ( [tex]\frac{sin^2\alpha }{cos^2\alpha } + \frac{1}{sin^2\alpha } + 1 )* sin^2\alpha *cos^2\alpha =[/tex]
= [tex]sin^4\alpha + cos^2\alpha + sin^2\alpha *cos^2\alpha =[/tex]
= [tex]sin^2\alpha *(sin^2\alpha + cos^2\alpha ) + cos^2\alpha =[/tex]
= [tex]sin^2\alpha + cos^2\alpha = 1[/tex]
=====================
Szczegółowe wyjaśnienie: