Prąd elektryczny może przepływać przez wiele substancji. Przepływa przez elektrolity, grafit, węgiel, niektóre tworzywa sztuczne. Niektóre pierwiastki (jak krzem i german) lub różne związki chemiczne przewodzą prąd w szczególnych warunkach. Są to półprzewodniki, używane w elektronice. Ale najlepszymi i najczęściej używanymi przewodnikami prądu są metale. Niektóre z nich, jak miedź, aluminium, srebro nadają się do tego celu szczególnie. Metale. Wszystkie metale składają się z niezliczonej liczby oddzielnych ziaren - kryształów, ciasno do siebie przylegających i silnie związanych wewnętrznymi siłami spójności. Dlatego metale są zaliczane do ciał krystalicznych. Ich krystalizacja następuje podczas stygnięcia płynnego, roztopionego metalu. Podczas chłodzenia płynnego metalu, jego krzepnięcie zaczyna się od tworzenia zarodków krystalizacji, którymi mogą być obce atomy lub molekuły istniejących w cieczy zanieczyszczeń. Również w czystym metalu tworzą się zarodki krystalizacji z atomów stygnącego metalu, kiedy to zmniejszająca się energia kilku sąsiadujących atomów powoduje, że układają się w grupę odpowiadającą sieci krystalicznej. Tworzy się kryształ w formie sześcianu, trapezoidu czy pt.. Zanieczyszczenia występujące w ciekłych metalach, o ile nie są wbudowane w sieć, przesuwane są przez front krystalizacji i tworzą później obszar granicy ziaren. W procesie krystalizacji pojawia się równocześnie wiele zarodków krystalizacji, dlatego prawidłowo zbudowanych kryształów jest mało, lub nie ma ich wcale, ponieważ rosnące równocześnie kryształy przeszkadzają sobie wzajemnie w wytwarzaniu prawidłowych form. Na wskutek tego, wzrost naroży kryształów ulega zahamowaniu, kształty kryształów nie są prawidłowe, przyjmują kształt ziaren. Ziarna te nazywane są krystalitami w odróżnieniu od regularnych kształtów kryształów np. cukru, soli czy minerałów. Im metal szybciej stygnie, tym więcej pojawia się ośrodków krystalizacji i tym drobniejsze są tworzące się kryształy. Ziarna mają różną wielkość - od tysięcznych części milimetra, w szybko schłodzonym i mechanicznie obrobionym metalu - do kilku centymetrów w lanym i wolno schłodzonym. Niektórym firmom udaje się wyciągać drut miedziany w którym 1 kryształ ma długość ponad 200 m! Każda mechaniczna obróbka (np. kucie, czy wyciąganie drutu) powoduje zmniejszenie kryształów, ich deformacje, spłaszczenie, wygięcie itp. Zmieniają się wtedy właściwości metali - stają się twardsze a równocześnie bardziej kruche; sprężyste, a równocześnie tracą plastyczność, stają się mniej ciągliwe. By odbudować prawidłową strukturę metalu stosuje się proces zwany rekrystalizacją. Polega to na podgrzaniu metalu do odpowiedniej temperatury (dla każdego metalu innej) i powolnemu schłodzeniu. W wyniku podgrzania, zwiększa się ruchliwość atomów metalu, ułatwiony jest ich ruch wewnątrz kryształów i przemieszczanie się z jednego kryształu do drugiego, w wyniku czego ziarna ulegają "odbudowaniu", powracają do prawidłowej, niezniekształconej siatki krystalicznej a nawet mogą rosnąć kosztem innych, bardziej zniekształconych. Metal może zawierać wiele zanieczyszczeń - rozpuszczonych w nim podczas wytopu różnych pierwiastków i związków chemicznych. Zanieczyszczenia w przewodniku nie są korzystne - pogarszają jego plastyczność, zmniejszają przewodność, a nawet mogą powodować zakłócenia w przepływie prądu. Dlatego dąży się do uzyskania jak najczystszego przewodnika, szczególnie w wysokiej klasy kablach do zestawów audio czy wideo. Kable połączeniowe w systemach audio buduje się z przewodnika, którym najczęściej jest miedź i srebro. Metale te mogą być czyste, z dodatkami innych metali lub pokrywane innym metalem (miedź srebrzona lub cynowana). Używa się także włókien węglowych, niektórych przewodzących polimerów, lub
Prąd elektryczny może przepływać przez wiele substancji. Przepływa przez elektrolity, grafit, węgiel, niektóre tworzywa sztuczne. Niektóre pierwiastki (jak krzem i german) lub różne związki chemiczne przewodzą prąd w szczególnych warunkach. Są to półprzewodniki, używane w elektronice. Ale najlepszymi i najczęściej używanymi przewodnikami prądu są metale. Niektóre z nich, jak miedź, aluminium, srebro nadają się do tego celu szczególnie.
Metale.
Wszystkie metale składają się z niezliczonej liczby oddzielnych ziaren - kryształów, ciasno do siebie przylegających i silnie związanych wewnętrznymi siłami spójności. Dlatego metale są zaliczane do ciał krystalicznych. Ich krystalizacja następuje podczas stygnięcia płynnego, roztopionego metalu. Podczas chłodzenia płynnego metalu, jego krzepnięcie zaczyna się od tworzenia zarodków krystalizacji, którymi mogą być obce atomy lub molekuły istniejących w cieczy zanieczyszczeń. Również w czystym metalu tworzą się zarodki krystalizacji z atomów stygnącego metalu, kiedy to zmniejszająca się energia kilku sąsiadujących atomów powoduje, że układają się w grupę odpowiadającą sieci krystalicznej. Tworzy się kryształ w formie sześcianu, trapezoidu czy pt.. Zanieczyszczenia występujące w ciekłych metalach, o ile nie są wbudowane w sieć, przesuwane są przez front krystalizacji i tworzą później obszar granicy ziaren. W procesie krystalizacji pojawia się równocześnie wiele zarodków krystalizacji, dlatego prawidłowo zbudowanych kryształów jest mało, lub nie ma ich wcale, ponieważ rosnące równocześnie kryształy przeszkadzają sobie wzajemnie w wytwarzaniu prawidłowych form. Na wskutek tego, wzrost naroży kryształów ulega zahamowaniu, kształty kryształów nie są prawidłowe, przyjmują kształt ziaren. Ziarna te nazywane są krystalitami w odróżnieniu od regularnych kształtów kryształów np. cukru, soli czy minerałów.
Im metal szybciej stygnie, tym więcej pojawia się ośrodków krystalizacji i tym drobniejsze są tworzące się kryształy. Ziarna mają różną wielkość - od tysięcznych części milimetra, w szybko schłodzonym i mechanicznie obrobionym metalu - do kilku centymetrów w lanym i wolno schłodzonym. Niektórym firmom udaje się wyciągać drut miedziany w którym 1 kryształ ma długość ponad 200 m!
Każda mechaniczna obróbka (np. kucie, czy wyciąganie drutu) powoduje zmniejszenie kryształów, ich deformacje, spłaszczenie, wygięcie itp. Zmieniają się wtedy właściwości metali - stają się twardsze a równocześnie bardziej kruche; sprężyste, a równocześnie tracą plastyczność, stają się mniej ciągliwe. By odbudować prawidłową strukturę metalu stosuje się proces zwany rekrystalizacją. Polega to na podgrzaniu metalu do odpowiedniej temperatury (dla każdego metalu innej) i powolnemu schłodzeniu. W wyniku podgrzania, zwiększa się ruchliwość atomów metalu, ułatwiony jest ich ruch wewnątrz kryształów i przemieszczanie się z jednego kryształu do drugiego, w wyniku czego ziarna ulegają "odbudowaniu", powracają do prawidłowej, niezniekształconej siatki krystalicznej a nawet mogą rosnąć kosztem innych, bardziej zniekształconych.
Metal może zawierać wiele zanieczyszczeń - rozpuszczonych w nim podczas wytopu różnych pierwiastków i związków chemicznych. Zanieczyszczenia w przewodniku nie są korzystne - pogarszają jego plastyczność, zmniejszają przewodność, a nawet mogą powodować zakłócenia w przepływie prądu. Dlatego dąży się do uzyskania jak najczystszego przewodnika, szczególnie w wysokiej klasy kablach do zestawów audio czy wideo.
Kable połączeniowe w systemach audio buduje się z przewodnika, którym najczęściej jest miedź i srebro. Metale te mogą być czyste, z dodatkami innych metali lub pokrywane innym metalem (miedź srebrzona lub cynowana). Używa się także włókien węglowych, niektórych przewodzących polimerów, lub