Odpowiedź:
6. q i r
3²⁴:3⁸=3¹⁶
(3⁵)⁶:(3⁹)³=3³⁰:3²⁷=3³
(3⁸*3¹⁰*3¹²):(3⁹*3¹¹*3¹³)=3³⁰:3³³=3-³
3³*3-³=3⁰=1
2.
(3:4)⁷*(2:3)⁷=((3:4)(2:3))⁷=(1:2)⁷
(-18)³:(-2)³=(-18:(-2))³=9³
((-0,6)³)⁵=(-0,6)¹⁵=-0,6¹⁵
Szczegółowe wyjaśnienie:
Korzystamy z praw potęgowania:
[tex]a^{m}\cdot a^{n} = a^{m+n}\\\\a^{m}:a^{n} = a^{m-n}\\\\a^{n}\cdot b^{n} = (a\cdot b)^{n}\\\\a^{n}:b^{n} = (a:b)^{n}\\\\(a^{m})^{n} = a^{m\cdot n}\\\\a^{0} = 1[/tex]
Ćwiczenie 2
[tex]b) \ (\frac{3}{4})^{7}\cdot(\frac{2}{3})^{7} = (\frac{3}{4}\cdot\frac{2}{3})^{7} =(\frac{2}{4})^{7} =\boxed{ \left(\frac{1}{2}\right)^{7}}[/tex]
[tex]c) \ (-18)^{3}:(-2)^{3} = [-18:(-2)]^{3} = \boxed{9^{3}}[/tex]
[tex]d) \ [(-0,6)^3]^{5} = (-0,6)^{3\cdot 5} = \boxed{(-0,6)^{15}}[/tex]
Ćwiczenie 6
[tex]p = 3^{24}:3^{8} =3^{24-8} = 3^{16}\\\\q = (3^{5})^{6}:(3^{9})^{3} = 3^{5\cdot6}:3^{9\cdot3} = 3^{30}:3^{27} = 3^{30-27} = \underline{3^{3}}\\\\r = \frac{3^{8}\cdot3^{10}\cdot3^{12}}{3^{9}\cdot3^{11}\cdot3^{13}} = \frac{3^{8+10+12}}{3^{9+11+13}} = \frac{3^{30}}{3^{33}} =3^{30-33} = \underline{3^{-3}}[/tex]
a⁰ = 1, zatem iloczyn q i r da nam 1:
[tex]q\cdot r = 3^{3}\cdot 3^{-3} = 3^{3+(-3)} = 3^{3-3} = 3^{0} = \underline{1}\\\\Odp. \ \boxed{q\cdot r = 1}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
6. q i r
3²⁴:3⁸=3¹⁶
(3⁵)⁶:(3⁹)³=3³⁰:3²⁷=3³
(3⁸*3¹⁰*3¹²):(3⁹*3¹¹*3¹³)=3³⁰:3³³=3-³
3³*3-³=3⁰=1
2.
(3:4)⁷*(2:3)⁷=((3:4)(2:3))⁷=(1:2)⁷
(-18)³:(-2)³=(-18:(-2))³=9³
((-0,6)³)⁵=(-0,6)¹⁵=-0,6¹⁵
Verified answer
Szczegółowe wyjaśnienie:
Potęgi
Korzystamy z praw potęgowania:
[tex]a^{m}\cdot a^{n} = a^{m+n}\\\\a^{m}:a^{n} = a^{m-n}\\\\a^{n}\cdot b^{n} = (a\cdot b)^{n}\\\\a^{n}:b^{n} = (a:b)^{n}\\\\(a^{m})^{n} = a^{m\cdot n}\\\\a^{0} = 1[/tex]
Ćwiczenie 2
[tex]b) \ (\frac{3}{4})^{7}\cdot(\frac{2}{3})^{7} = (\frac{3}{4}\cdot\frac{2}{3})^{7} =(\frac{2}{4})^{7} =\boxed{ \left(\frac{1}{2}\right)^{7}}[/tex]
[tex]c) \ (-18)^{3}:(-2)^{3} = [-18:(-2)]^{3} = \boxed{9^{3}}[/tex]
[tex]d) \ [(-0,6)^3]^{5} = (-0,6)^{3\cdot 5} = \boxed{(-0,6)^{15}}[/tex]
Ćwiczenie 6
[tex]p = 3^{24}:3^{8} =3^{24-8} = 3^{16}\\\\q = (3^{5})^{6}:(3^{9})^{3} = 3^{5\cdot6}:3^{9\cdot3} = 3^{30}:3^{27} = 3^{30-27} = \underline{3^{3}}\\\\r = \frac{3^{8}\cdot3^{10}\cdot3^{12}}{3^{9}\cdot3^{11}\cdot3^{13}} = \frac{3^{8+10+12}}{3^{9+11+13}} = \frac{3^{30}}{3^{33}} =3^{30-33} = \underline{3^{-3}}[/tex]
a⁰ = 1, zatem iloczyn q i r da nam 1:
[tex]q\cdot r = 3^{3}\cdot 3^{-3} = 3^{3+(-3)} = 3^{3-3} = 3^{0} = \underline{1}\\\\Odp. \ \boxed{q\cdot r = 1}[/tex]