Jawaban:
4
Penjelasan dengan langkah-langkah:
Step 1 - Mencari [tex] \footnotesize \bf {f}^{ - 1}(x)[/tex]
[tex]\begin{aligned}f(x)& = \frac{3x - 2}{x + 1} \\ y& = \frac{3x - 2}{x + 1} \\ y(x + 1)& = 3x - 2\\ yx + y& = 3x - 2\\yx - 3x& = - y - 2\\x(y - 3)& = - y - 2\\ x& = \frac{- y - 2}{y - 3}\\ {f}^{ - 1}(x) & = \frac{- x - 2}{x - 3} \end{aligned} [/tex]
Step 2 - Mencari [tex] \footnotesize \bf {f}^{ - 1}(2)[/tex]
[tex] \begin{aligned}{f}^{ - 1}(x) & = \frac{- x - 2}{x - 3} \\ {f}^{ - 1}(2) & = \frac{- 2- 2}{2- 3} \\ {f}^{ - 1}(2) & = \frac{- 4}{-1} \\{f}^{ - 1}(2) & = \bf 4 \end{aligned}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawaban:
4
Penjelasan dengan langkah-langkah:
Step 1 - Mencari [tex] \footnotesize \bf {f}^{ - 1}(x)[/tex]
[tex]\begin{aligned}f(x)& = \frac{3x - 2}{x + 1} \\ y& = \frac{3x - 2}{x + 1} \\ y(x + 1)& = 3x - 2\\ yx + y& = 3x - 2\\yx - 3x& = - y - 2\\x(y - 3)& = - y - 2\\ x& = \frac{- y - 2}{y - 3}\\ {f}^{ - 1}(x) & = \frac{- x - 2}{x - 3} \end{aligned} [/tex]
Step 2 - Mencari [tex] \footnotesize \bf {f}^{ - 1}(2)[/tex]
[tex] \begin{aligned}{f}^{ - 1}(x) & = \frac{- x - 2}{x - 3} \\ {f}^{ - 1}(2) & = \frac{- 2- 2}{2- 3} \\ {f}^{ - 1}(2) & = \frac{- 4}{-1} \\{f}^{ - 1}(2) & = \bf 4 \end{aligned}[/tex]