Odpowiedź:
[tex]\huge\boxed{zad.9}[/tex]
[tex]\huge\boxed{a)~~\dfrac{5}{\sqrt{2} } =\dfrac{5\sqrt{4} }{2} }[/tex]
[tex]\huge\boxed{b)~~\dfrac{6}{\sqrt[3]{9} } =2\sqrt[3]{3} }[/tex]
Szczegółowe wyjaśnienie:
Usuwanie niewymierności z mianownika
Korzystamy ze wzorów:
Usuwamy niewymierność z mianownika i obliczamy:
[tex]a)~~\dfrac{5}{\sqrt{2} } =\dfrac{5}{\sqrt{2} }\cdot \dfrac{\sqrt{2} }{\sqrt{2} }=\dfrac{5\sqrt{2} }{\sqrt{2\cdot 2} }=\dfrac{5\sqrt{2} }{\sqrt{2^{2}} }=\boxed{\dfrac{5\sqrt{4} }{2} }[/tex]
[tex]b)~~\dfrac{6}{\sqrt[3]{9} } =\dfrac{6}{\sqrt[3]{3\cdot 3} }\cdot \dfrac{\sqrt[3]{3} }{\sqrt[3]{3} }=\dfrac{6\sqrt[3]{3} }{\sqrt[3]{3\cdot 3\cdot 3} }=\dfrac{6\sqrt[3]{3} }{\sqrt[3]{3^{3}} }=\dfrac{6\!\!\!\!\diagup^2\sqrt[3]{3} }{3\!\!\!\!\diagup_1} =\boxed{2\sqrt[3]{3} }[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]\huge\boxed{zad.9}[/tex]
[tex]\huge\boxed{a)~~\dfrac{5}{\sqrt{2} } =\dfrac{5\sqrt{4} }{2} }[/tex]
[tex]\huge\boxed{b)~~\dfrac{6}{\sqrt[3]{9} } =2\sqrt[3]{3} }[/tex]
Szczegółowe wyjaśnienie:
Usuwanie niewymierności z mianownika
Korzystamy ze wzorów:
Usuwamy niewymierność z mianownika i obliczamy:
[tex]a)~~\dfrac{5}{\sqrt{2} } =\dfrac{5}{\sqrt{2} }\cdot \dfrac{\sqrt{2} }{\sqrt{2} }=\dfrac{5\sqrt{2} }{\sqrt{2\cdot 2} }=\dfrac{5\sqrt{2} }{\sqrt{2^{2}} }=\boxed{\dfrac{5\sqrt{4} }{2} }[/tex]
[tex]b)~~\dfrac{6}{\sqrt[3]{9} } =\dfrac{6}{\sqrt[3]{3\cdot 3} }\cdot \dfrac{\sqrt[3]{3} }{\sqrt[3]{3} }=\dfrac{6\sqrt[3]{3} }{\sqrt[3]{3\cdot 3\cdot 3} }=\dfrac{6\sqrt[3]{3} }{\sqrt[3]{3^{3}} }=\dfrac{6\!\!\!\!\diagup^2\sqrt[3]{3} }{3\!\!\!\!\diagup_1} =\boxed{2\sqrt[3]{3} }[/tex]