Jawaban:
3. 21
4. 4
Penjelasan dengan langkah-langkah:
Nomor 3
[tex]\begin{aligned} \displaystyle\rm~ \int_{-1}^{2} ~ {3x}^{2} + 8x ~dx & = \displaystyle\rm~ {x}^{3} + {4x}^{2} \Bigr|_{-1}^{2} \\ \\ & = \displaystyle\rm~( {2}^{3} + 4 {(2)}^{2}) - ( {( - 1)}^{3} + 4 {( - 1)}^{2} ) \\ & = \displaystyle\rm~(8 + 4(4)) - ( - 1 + 4(1)) \\ & = \displaystyle\rm~(8 + 16) - ( - 1 + 4) \\ & = \displaystyle\rm~24 - 3 \\ & = \displaystyle\rm~21 \end{aligned}[/tex]
Nomor 4
[tex]\begin{aligned}\displaystyle\rm~\int~ {6x}^{ \frac{1}{2} } ~dx & = \displaystyle\rm~ \frac{6}{ \frac{1}{2} + 1 } {x}^{ \frac{1}{2} + 1} + C \\ \\ & = \displaystyle\rm~ \frac{6}{ \frac{3}{2} } {x}^{ \frac{3}{2} } + C \\ \\ & = \displaystyle\rm~ {4x}^{1 \frac{1}{2} } + C \\ \\ & = \displaystyle\rm~4x \sqrt{x} + C \end{aligned}[/tex]
[tex]\begin{aligned} \displaystyle\rm~ \int_{0}^{1} ~ {6x}^{ \frac{1}{2} } ~ dx & = \displaystyle\rm~ 4x \sqrt{x}~ \Bigr|_{0}^{1} \\ \\ & = \displaystyle\rm~(4(1) \sqrt{1}) - (4(0) \sqrt{0}) \\ & = \displaystyle\rm~4 \sqrt{1} - 0 \\ & = \displaystyle\rm~4 - 0 \\ & = \displaystyle\rm~4 \end{aligned}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
jawabannya 21 dan 4cara terlampir yaa
semoga membantu
Jawaban:
3. 21
4. 4
Penjelasan dengan langkah-langkah:
Nomor 3
[tex]\begin{aligned} \displaystyle\rm~ \int_{-1}^{2} ~ {3x}^{2} + 8x ~dx & = \displaystyle\rm~ {x}^{3} + {4x}^{2} \Bigr|_{-1}^{2} \\ \\ & = \displaystyle\rm~( {2}^{3} + 4 {(2)}^{2}) - ( {( - 1)}^{3} + 4 {( - 1)}^{2} ) \\ & = \displaystyle\rm~(8 + 4(4)) - ( - 1 + 4(1)) \\ & = \displaystyle\rm~(8 + 16) - ( - 1 + 4) \\ & = \displaystyle\rm~24 - 3 \\ & = \displaystyle\rm~21 \end{aligned}[/tex]
Nomor 4
[tex]\begin{aligned}\displaystyle\rm~\int~ {6x}^{ \frac{1}{2} } ~dx & = \displaystyle\rm~ \frac{6}{ \frac{1}{2} + 1 } {x}^{ \frac{1}{2} + 1} + C \\ \\ & = \displaystyle\rm~ \frac{6}{ \frac{3}{2} } {x}^{ \frac{3}{2} } + C \\ \\ & = \displaystyle\rm~ {4x}^{1 \frac{1}{2} } + C \\ \\ & = \displaystyle\rm~4x \sqrt{x} + C \end{aligned}[/tex]
[tex]\begin{aligned} \displaystyle\rm~ \int_{0}^{1} ~ {6x}^{ \frac{1}{2} } ~ dx & = \displaystyle\rm~ 4x \sqrt{x}~ \Bigr|_{0}^{1} \\ \\ & = \displaystyle\rm~(4(1) \sqrt{1}) - (4(0) \sqrt{0}) \\ & = \displaystyle\rm~4 \sqrt{1} - 0 \\ & = \displaystyle\rm~4 - 0 \\ & = \displaystyle\rm~4 \end{aligned}[/tex]