Piłka o masie 1 kg spada swobodnie z wysokości 10 m. energia kinetyczna piłki będzie równa energii potencjalnej na wysokości :
pomocny
Na początku piłka posiada tylko Energie potencjalną, oznaczmy ją Ep0. Z zasady zachowania energii wiemy, że Ep+Ek=constt w tym przypadku. Zatem Ep będzie równe Ek wtedy, gdy Ep=Ek=0,5Ep0. Jako, że Ep=mgh, m i g są stałe, to h1=0,5h. Tak więc energia kinetyczna piłki będzie równa energii potencjalnej na wysokości 5m.
Energia potencjalna na wysokości H=10 m jest maksymalna i wynosi: Ep=mgH=1*10*10=100 [J] Ek wynosi 0, ponieważ prędkość piłki wynosi 0. Wraz ze spadkiem piłki zmniejsza się wysokość (energia potencjalna maleje) i rośnie prędkość piłki, a więc rośnie również energia kinetyczna. Em=Ep+Ek i jest stała, a więc na szczycie Em=100+0=100 [J] Na szukanej wysokości h : Ep=Ek Ep+Ek=100 2*Ep=100 Ep=50 m*g*h=50 1*10*h=50 h=5 m Odp. Energia kinetyczna piłki będzie równa energii potencjalnej na wysokości 5m
H=10 m
h=?
Energia potencjalna na wysokości H=10 m jest maksymalna i wynosi:
Ep=mgH=1*10*10=100 [J]
Ek wynosi 0, ponieważ prędkość piłki wynosi 0.
Wraz ze spadkiem piłki zmniejsza się wysokość (energia potencjalna maleje) i rośnie prędkość piłki, a więc rośnie również energia kinetyczna.
Em=Ep+Ek i jest stała, a więc na szczycie Em=100+0=100 [J]
Na szukanej wysokości h : Ep=Ek
Ep+Ek=100
2*Ep=100
Ep=50
m*g*h=50
1*10*h=50
h=5 m
Odp. Energia kinetyczna piłki będzie równa energii potencjalnej na wysokości 5m