Pierwszy gracz rzuca trzema , a drugi dwoma jednakowymi monetami. Wygrywa i dostaje pięć monet ten gracz , który wyrzuci więcej orłów . Gdy liczby orłów są jednakowe , gra jest kontynuowana , dopóki jeden z graczy nie wygra . Jaka jest wartość oczekiwana wygranej dla każdego z graczy ?
Możemy pominąć sytuację, gdy wypadnie tyle samo, gdyż wtedy powtarzamy grę na takich samych procentach.
Prawdopodobieństwo, że gra zakończy się zwycięstwem rzucającego 3 monetami:
[tex]\frac{0,5}{0,5+0,1875} =\frac{8}{11}[/tex]
Prawdopodobieństwo, że gra zakończy się zwycięstwem rzucającego 2 monetami:
[tex]1-\frac{8}{11} =\frac{3}{11}[/tex]
Liczę na naj.
Wytłumaczenie:
Wartość oczekiwana to przeciętny wynik dla danego zdarzenie, czyli wartość oczekiwana dla rzutu monetą, to że raz wypadnie orzeł, a raz reszka ( na 2 rzuty raz wypadnie orzeł, a raz reszka)
1 votes Thanks 0
zibid8495
odpowiedź z książki EX dla pierwszego gracza +7/11 , a dla drugiego -7/11
Odpowiedź:
Na 11 gier średnio 8 wygra rzucający 3 monetami, a 3 wygra rzucający 2 monetami.
Szczegółowe wyjaśnienie:
Rzut dwoma:
Szansa na 0 orłów:25%
Szansa na 1 orła: 50%
Szansa na 2 orły: 25%
Rzut trzema
Szansa na 0 orłów: 12,5%
Szansa na 1 Orła: 37,5%
Szansa na 2 orły: 37,5%
Szansa na 3 orły: 12,5%
Szansa, że będzie tyle samo orłów:
[tex]0,25*0,125+0,5*0,375+0,25*0,375=0,3125=31,25[/tex]%
Szansa, że przy rzucie 2 wypadnie więcej orłów:
[tex]0,5*0,125+0,25*0,375+0,25*0,125=0,1875=18,75[/tex]%
Szansa, że przy rzucie 3 wypadnie więcej orłów:
[tex]1-0,3125-0,1875=0,5=50[/tex]%
Oczekiwane prawdopodobieństwo:
Możemy pominąć sytuację, gdy wypadnie tyle samo, gdyż wtedy powtarzamy grę na takich samych procentach.
Prawdopodobieństwo, że gra zakończy się zwycięstwem rzucającego 3 monetami:
[tex]\frac{0,5}{0,5+0,1875} =\frac{8}{11}[/tex]
Prawdopodobieństwo, że gra zakończy się zwycięstwem rzucającego 2 monetami:
[tex]1-\frac{8}{11} =\frac{3}{11}[/tex]
Liczę na naj.
Wytłumaczenie:
Wartość oczekiwana to przeciętny wynik dla danego zdarzenie, czyli wartość oczekiwana dla rzutu monetą, to że raz wypadnie orzeł, a raz reszka ( na 2 rzuty raz wypadnie orzeł, a raz reszka)