" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
2x + 1 ≤ - 3 atau 2x + 1 ≥ 3
2x ≤ - 4 2x ≥ 2
x ≤ - 2 x ≥ 1
b) kalikan ke dalam menjadi:
|x - 3| ≤ 1/5
x - 3 ≤ - 1/5 atau x - 3 ≥ 1/5
x ≤ 3 - 1/5 x ≥ 3 + 1/5
x ≤ 14/5 x ≥ 16/5
c) |2x + 3| > 1/4
2x + 3 < - 1/4 atau 2x + 3 > 1/4
2x < - 13/4 2x > - 11/4
x < - 13/8 x > - 11/8
d) |x² - 5| < 4
- 4 < x² - 5 < 4
x² - 5 > - 4
x² - 1 > 0
(x + 1)(x - 1) > 0
x < - 1 atau x > 1
x² - 5 < 4
x² - 9 < 0
(x + 3)(x - 3) < 0
- 3 < x < 3