Para resolver el deber de estadística de pedagogía de los idiomas, el tiempo empleado en horas, sigue una distribución Normal con media de 10 horas y desviación estándar de 2 horas, Se pide la probabilidad de que se demore en hacer: a) Entre 6 y 9 horas b) Entre 8 y 13 horas
La probabilidad de que se demore en hacer el deber de estadística de pedagogía de los idiomas :
a) Entre 6 y 9 horas es 0,08104
b) Entre 8 y 13 horas es 0,77453
Explicación:
Probabilidad de Distribución Normal
Datos:
μ = 10 horas
σ = 2 horas
Z = (x-μ)/σ
La probabilidad de que se demore en hacer el deber de estadística de pedagogía de los idiomas :
a) Entre 6 y 9 horas
Z₁ = (6-10)/2 = -2 Valor que ubicamos en la tabla de distribución Normal y obtenemos la probabilidad:
P(x≤6) =0,2275
Z₂ = (9-10)/2 = -0,5 Valor que ubicamos en la tabla de distribución Normal y obtenemos la probabilidad:
P(x≤9) =0,30854
P(6≤x≤9) = 0,30854-0,2275 = 0,08104
b) Entre 8 y 13 horas
Z₁ = (8-10)/2 = -1 Valor que ubicamos en la tabla de distribución Normal y obtenemos la probabilidad:
P(x≤8) =0,15866
Z₂ = (13-10)/2 = 1,5 Valor que ubicamos en la tabla de distribución Normal y obtenemos la probabilidad:
P(x≤13) =0,93319
P(8≤x≤13) = 0,77453