45
Penjelasan dengan langkah-langkah:
[tex]\begin{aligned}\displaystyle\tt~ \lim_{x\to4} \frac{ {x}^{3} + {x}^{2} - 25x - 25 }{x - 5} & = \displaystyle\tt~ \lim_{x\to4} \frac{\cancel{(x - 5)}( {x}^{2} + 6x + 5)}{\cancel{x - 5}} \\ \\ & = \displaystyle\tt~ \lim_{x\to4} {x}^{2} + 6x + 5 \\ & = \displaystyle\tt~ {4}^{2} + 6(4) + 5 \\ & = \displaystyle\tt~ 16 + 24 + 5 \\ & = \displaystyle\tt~ 45 \\ & \displaystyle\tt~\longmapsto~No~opsi\end{aligned}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
45
Penjelasan dengan langkah-langkah:
[tex]\begin{aligned}\displaystyle\tt~ \lim_{x\to4} \frac{ {x}^{3} + {x}^{2} - 25x - 25 }{x - 5} & = \displaystyle\tt~ \lim_{x\to4} \frac{\cancel{(x - 5)}( {x}^{2} + 6x + 5)}{\cancel{x - 5}} \\ \\ & = \displaystyle\tt~ \lim_{x\to4} {x}^{2} + 6x + 5 \\ & = \displaystyle\tt~ {4}^{2} + 6(4) + 5 \\ & = \displaystyle\tt~ 16 + 24 + 5 \\ & = \displaystyle\tt~ 45 \\ & \displaystyle\tt~\longmapsto~No~opsi\end{aligned}[/tex]