Diketahui suatu barisan aritmatika, dengan beda = -3.
Jumlah 5 bilangan pertama = 310 n/2 (2a + (n – 1)b) = Sn ↔ 5/2 (2a + (5 – 1)(-3)) = s5 ↔ 5/2 (2a + 4(-3)) = 310 ↔ 2a – 12 = 310 × 2/5 ↔ 2a = 124 + 12 = 136 ↔ a = 136/2 = 68
Jumlah 5 bilangan terakhir = 55 Un-4 + Un-3 + Un-2 + Un-1 + Un = 55
Un = a + (n – 1)b = 69 + (n – 1)(-3) = 68 – 3n + 3 = 71 – 3n Un-1 = a + (n – 2)b = 69 + (n – 2)(-3) = 68 – 3n + 6 = 74 – 3n Un-2 = 77 – 3n Un-3 = 80 – 3n Un-4 = 83 – 3n
Un-4 + Un-3 + Un-2 + Un-1 + Un = 55 ↔ 71 – 3n + 74 – 3n + 77 – 3n + 80 – 3n + 83 – 3n = 55 ↔ 71 + 74 + 77 + 80 + 83 – 55 = 3n + 3n + 3n + 3n + 3n ↔ 330 = 15n ↔ n = 330/15 = 22
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Diketahui suatu barisan aritmatika, dengan beda = -3.
Jumlah 5 bilangan pertama = 310
n/2 (2a + (n – 1)b) = Sn
↔ 5/2 (2a + (5 – 1)(-3)) = s5
↔ 5/2 (2a + 4(-3)) = 310
↔ 2a – 12 = 310 × 2/5
↔ 2a = 124 + 12 = 136
↔ a = 136/2 = 68
Jumlah 5 bilangan terakhir = 55
Un-4 + Un-3 + Un-2 + Un-1 + Un = 55
Un = a + (n – 1)b = 69 + (n – 1)(-3) = 68 – 3n + 3 = 71 – 3n
Un-1 = a + (n – 2)b = 69 + (n – 2)(-3) = 68 – 3n + 6 = 74 – 3n
Un-2 = 77 – 3n
Un-3 = 80 – 3n
Un-4 = 83 – 3n
Un-4 + Un-3 + Un-2 + Un-1 + Un = 55
Jadi, banyak suku pada barisan tersebut adalah 22 buah↔ 71 – 3n + 74 – 3n + 77 – 3n + 80 – 3n + 83 – 3n = 55
↔ 71 + 74 + 77 + 80 + 83 – 55 = 3n + 3n + 3n + 3n + 3n
↔ 330 = 15n
↔ n = 330/15 = 22