[tex] \begin{align} (g\circ f)(x) &= -4x^2-12x-8 \\ g(f(x)) &= -4x^2-12x-8 \\ -(f(x))^2+1 &= -4x^2-12x-8 \\ -(f(x))^2 &= -4x^2-12x-9 \\ (f(x))^2 &= 4x^2+12x+9 \:\:\green{, a^2 =b \Leftrightarrow a = \pm \sqrt{b} } \\ f(x) &= \pm \sqrt{4x^2+12x+9} \\ f(x) &= \pm \sqrt{(2x+3)^2} \:\:\green{,\sqrt{a^2}=|a|} \\ f(x) &= \pm\: |2x+3| \end{align} [/tex]
Jawab:Terdapat dua penyelesaianf(x) = 2x+3, f(x) = -2x-3Penjelasan:(7.) Tentukan f(x) jika(b.) (gof)(x) = -4x²-12x-8g(x) = -x²+1---------------------------------g(f(x)) = -4x²-12x-8Anggap f(x) = ug(u) = -4x²-12x-8-u²+1 = -4x²-12x-8u² = 4x²+12x+8+1u² = 4x²+12x+9u² = (2x)²+2x(3)+3²∵ a²+2ab+b² = (a+b)² ∴u² = (2x+3)²|u| = √(2x+3)²|u| = 2x+3u = 2x+3, u = -(2x+3)u = 2x+3, u = -2x-3f(x) = 2x+3, f(x) = -2x-3(xcvi)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[tex] \begin{align} (g\circ f)(x) &= -4x^2-12x-8 \\ g(f(x)) &= -4x^2-12x-8 \\ -(f(x))^2+1 &= -4x^2-12x-8 \\ -(f(x))^2 &= -4x^2-12x-9 \\ (f(x))^2 &= 4x^2+12x+9 \:\:\green{, a^2 =b \Leftrightarrow a = \pm \sqrt{b} } \\ f(x) &= \pm \sqrt{4x^2+12x+9} \\ f(x) &= \pm \sqrt{(2x+3)^2} \:\:\green{,\sqrt{a^2}=|a|} \\ f(x) &= \pm\: |2x+3| \end{align} [/tex]
Verified answer
Jawab:
Terdapat dua penyelesaian
f(x) = 2x+3,
f(x) = -2x-3
Penjelasan:
(7.) Tentukan f(x) jika
(b.) (gof)(x) = -4x²-12x-8
g(x) = -x²+1
---------------------------------
g(f(x)) = -4x²-12x-8
Anggap f(x) = u
g(u) = -4x²-12x-8
-u²+1 = -4x²-12x-8
u² = 4x²+12x+8+1
u² = 4x²+12x+9
u² = (2x)²+2x(3)+3²
∵ a²+2ab+b² = (a+b)² ∴
u² = (2x+3)²
|u| = √(2x+3)²
|u| = 2x+3
u = 2x+3, u = -(2x+3)
u = 2x+3, u = -2x-3
f(x) = 2x+3, f(x) = -2x-3
(xcvi)