Odpowiedź:
x = log 4 + log 5 - log 2 = log (4*5) -log 2 = [tex]log \frac{20}{2} = log 10 = 1[/tex] bo [tex]10^1 = 10[/tex]
f) x = [tex]log_2 20 - lo_2 5 = log_2 \frac{20}{5} = log_2 4 = 2[/tex] bo [tex]2^2 = 4[/tex]
g) x = [tex]log_4 8 + log_2 2 = log_{2^2} 8 + 1 = \frac{1}{2} log_2 8 + 1 = \frac{1}{2} *3 + 1 = 2.5[/tex]
h ) x = [tex]log_5 9 + 2*(log_5 1 - log_5 3) =[/tex]
= [tex]log_5 9 + 2* log_5 (\frac{1}{3} ) = log_5 9 + log_5 (\frac{1}{3})^2 =[/tex] [tex]log_5 ( 9*\frac{1}{9} ) = log_5 1 = 0[/tex]
Szczegółowe wyjaśnienie:
Wzory:
[tex]log_a x + log_a y = log_a ( x*y)\\[/tex]
[tex]log_a x - log_a y = log_a (\frac{x}{y} )[/tex]
[tex]log_{a^\alpha } x = \frac{1}{\alpha } *log_a x[/tex] = [tex]\frac{1}{\alpha} *log_a x[/tex]
[tex]log_a x^n = n* log_a x[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
x = log 4 + log 5 - log 2 = log (4*5) -log 2 = [tex]log \frac{20}{2} = log 10 = 1[/tex] bo [tex]10^1 = 10[/tex]
f) x = [tex]log_2 20 - lo_2 5 = log_2 \frac{20}{5} = log_2 4 = 2[/tex] bo [tex]2^2 = 4[/tex]
g) x = [tex]log_4 8 + log_2 2 = log_{2^2} 8 + 1 = \frac{1}{2} log_2 8 + 1 = \frac{1}{2} *3 + 1 = 2.5[/tex]
h ) x = [tex]log_5 9 + 2*(log_5 1 - log_5 3) =[/tex]
= [tex]log_5 9 + 2* log_5 (\frac{1}{3} ) = log_5 9 + log_5 (\frac{1}{3})^2 =[/tex] [tex]log_5 ( 9*\frac{1}{9} ) = log_5 1 = 0[/tex]
Szczegółowe wyjaśnienie:
Wzory:
[tex]log_a x + log_a y = log_a ( x*y)\\[/tex]
[tex]log_a x - log_a y = log_a (\frac{x}{y} )[/tex]
[tex]log_{a^\alpha } x = \frac{1}{\alpha } *log_a x[/tex] = [tex]\frac{1}{\alpha} *log_a x[/tex]
[tex]log_a x^n = n* log_a x[/tex]