Odpowiedź:
6.
a)
(x - 1)²- (x + 2)² = 6
x² -2x + 1 - x² + 4x - 4 = 6
2x = 9
x = 4,5
b)
(3 - x)² + (2x - 1)² = 5x²
9 - 6x + x² + 4x² - 4x + 1 = 5x²
- 10x = - 10
x = 1
c)
x² - (x - 4)(4 + x) = 2
x² - (x - 4)(x + 4) = 2
x² - x² + 16 = 2
16 = 2 - równanie sprzeczne
d)
[tex](\frac{x}{2} + 3)(\frac{x}{2} - 3) = (\frac{x}{2} - 1)^{2}[/tex]
[tex]\frac{x^{2}}{4} + 9 = \frac{x^{2}}{4} -x - 1[/tex]
- 8 = - x
x = 8
7.
(x + 3)² - (x + 2)² ≤ 0
x² + 6x + 9 - x² - 4x + 4 ≤ 0
2x ≤ - 13
x ≤ - 7,5
(4 - x)² + (2 + x)² > 2x²
16 -8x + x² + 4 + 4x + x² > 2x²
-4x > - 20
x > 5
9x² + (2 + 3x)(2- 3x) ≥ 6x
9x² + 4 - 9x² ≥ 6x
4 ≥ 6x
x ≤ 1,5
[tex](\frac{3}{2}x - 4)(\frac{3}{2} + 4) < (\frac{3}{2}x - 1)^{2}[/tex]
[tex]\frac{9}{4}x^{2} - 16 < \frac{9}{4}x^{2} - 3x - 1[/tex]
-15 < - 3x
x > 0,2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
6.
a)
(x - 1)²- (x + 2)² = 6
x² -2x + 1 - x² + 4x - 4 = 6
2x = 9
x = 4,5
b)
(3 - x)² + (2x - 1)² = 5x²
9 - 6x + x² + 4x² - 4x + 1 = 5x²
- 10x = - 10
x = 1
c)
x² - (x - 4)(4 + x) = 2
x² - (x - 4)(x + 4) = 2
x² - x² + 16 = 2
16 = 2 - równanie sprzeczne
d)
[tex](\frac{x}{2} + 3)(\frac{x}{2} - 3) = (\frac{x}{2} - 1)^{2}[/tex]
[tex]\frac{x^{2}}{4} + 9 = \frac{x^{2}}{4} -x - 1[/tex]
- 8 = - x
x = 8
7.
a)
(x + 3)² - (x + 2)² ≤ 0
x² + 6x + 9 - x² - 4x + 4 ≤ 0
2x ≤ - 13
x ≤ - 7,5
b)
(4 - x)² + (2 + x)² > 2x²
16 -8x + x² + 4 + 4x + x² > 2x²
-4x > - 20
x > 5
c)
9x² + (2 + 3x)(2- 3x) ≥ 6x
9x² + 4 - 9x² ≥ 6x
4 ≥ 6x
x ≤ 1,5
d)
[tex](\frac{3}{2}x - 4)(\frac{3}{2} + 4) < (\frac{3}{2}x - 1)^{2}[/tex]
[tex]\frac{9}{4}x^{2} - 16 < \frac{9}{4}x^{2} - 3x - 1[/tex]
-15 < - 3x
x > 0,2