Odpowiedź:
= [tex]log_{\frac{\sqrt{x} }{\sqrt[3]{y} }} [ \frac{x^3*y^{0,5}}{x^{0,5}} *\frac{x^{1,5}*y^2}{y^{1,5}} ] +[/tex] [tex]log_{ (\frac{\sqrt{x} }{\sqrt[3]{y} })^{-1}} ( x*y^3) =[/tex]
[tex]= log_{\frac{\sqrt{x} }{\sqrt[3]{y} }} ( x^4*y) - log_{\frac{\sqrt{x} }{\sqrt[3]{y} } } ( x*y^3) =[/tex] [tex]log_{\frac{\sqrt{x} }{\sqrt[3]{y}} ( \frac{x^4*y}{x*y^3}) = log_{\frac{\sqrt{x} }{\sqrt[3]{y} }} (\frac{x^3}{y^2} ) = 6[/tex]
Szczegółowe wyjaśnienie:
[tex]log_{a^\alpha} x = \frac{1}{\alpha } log_a x[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
= [tex]log_{\frac{\sqrt{x} }{\sqrt[3]{y} }} [ \frac{x^3*y^{0,5}}{x^{0,5}} *\frac{x^{1,5}*y^2}{y^{1,5}} ] +[/tex] [tex]log_{ (\frac{\sqrt{x} }{\sqrt[3]{y} })^{-1}} ( x*y^3) =[/tex]
[tex]= log_{\frac{\sqrt{x} }{\sqrt[3]{y} }} ( x^4*y) - log_{\frac{\sqrt{x} }{\sqrt[3]{y} } } ( x*y^3) =[/tex] [tex]log_{\frac{\sqrt{x} }{\sqrt[3]{y}} ( \frac{x^4*y}{x*y^3}) = log_{\frac{\sqrt{x} }{\sqrt[3]{y} }} (\frac{x^3}{y^2} ) = 6[/tex]
Szczegółowe wyjaśnienie:
[tex]log_{a^\alpha} x = \frac{1}{\alpha } log_a x[/tex]