Odpowiedź:
a)
sinα = 0,1
sin²α = (0,1)² = 0,01
1 - cos²α = 0,01
cos²α = 1 - 0,01 = 0,99
cosα = √0,99 = √(99/100) = √99/10 = √(9 * 11)/10 = 3√11/10
tgα = sinα/cosα = 0,1 : 3√11/10 = 1/10 * 10/3√11 = 1/3√11 = √11/(3 * 11) =
= √11/33
ctgα = 1/tgα = 33/√11 = 33√11/11 = 3√11
b)
cosα = 0,9
cos²α = (0,9)² = 0,81
1 - sin²α = 0,81
sin²α = 1 - 0,81 = 0,19
sinα = √0,19 = √(19/100) = √19/10
tgα = sinα/cosα = √19/10 : 9/10 = √19/10 * 10/9 = √19/9
ctgα = 1/tgα = 9/√19 = 9√19/19
c)
cosα = 1/6
cos²α = (1/6)² = 1/36
1 - sin²α = 1/36
sin²α = 1 - 1/36 = 35/36
sinα = √(35/36) = √35/6
tgα = sinα/cosα = √35/6 : 1/6 = √35/6 * 6 = √35
ctgα = 1/tgα = 1/√35 = √35/35
d)
sinα = √3/3
sin²α = (√3/3)² = 3/9 = 1/3
1 - cos²α = 1/3
cos²α = 1 - 1/3 = 2/3
cosα = √(2/3) = √2/√3 = √2 * √3/3 = √6/3
tgα = sinα/cosα = √3/3 : √6/3 = √3/3 * 3/√6 = √3/√6 = √(3/6) = √(1/2) =
= 1/√2 = √2/2
ctgα = 1/tgα = 2/√2 = 2√2/2 = √2
e)
tgα = 8/15
tg²α = (8/15)² = 64/2258
sin²α/cos²α = 64/225
225sin²α = 64cos²α = 64(1 - sin²α) = 64 - 64sin²α
225sin²α + 64sin²α = 64
289sin²α = 64
sin²α = 64/289
sinα = √(64/289) = 8/17
tgα = sinα/cosα = 8/15
sinα = 8/15 * cosα
8/17 = 8/15 * cosα
cosα = 8/17 : 8/15 = 8/17 * 15/8 = 1/17 * 15 = 15/17
ctgα = 1/tgα = 15/8 = 1 7/8
f)
tgα = √5
tg²α = (√5)² = 5
sin²α/cos²α = 5
sin²α = 5cos²α = 5(1 - sin²α) = 5 - 5sin²α
sin²α + 5sin²α = 5
6sin²α = 5
sin²α = 5/6
sinα = √(5/6) = √5/√6 = √5 * √6/6 = √30/6
cosα = √(1 - sin²α) = √(1 - 30/36) = √(6/36) = √(1/6) = √1/√6 = 1/√6 = √6/6
ctgα = 1/tgα = 1/√5 = √5/5
g)
tgα = 1/4
tg²α = sin²α/cos²α = (1/4)² = 1/16
sin²α = 1/16 * cos²α = 1/16(1 - sin²α) = 1/16 - 1/16sin²α
sin²α + 1/16sin²α = 1/16
(1 1/16)sin²α = 1/16
sin²α = 1/16 : 1 1/16 = 1/16 : 17/16 = 1/16 * 16/17 = 1/17
cosα = √(1 - sin²α) = √(1 - 1/17) = √(16/17) = 4/√17 = 4√17/17
ctgα = 1/tgα = 4
h)
tgα = 2√3
tg²α = sin²α/cos²α = (2√3)² = 4 * 3 = 12
sin²α = 12cos²α = 12(1 - sin²α) = 12 - 12sin²α
sin²α + 12sin²α = 12
13sin²α = 12
sin²α = 12/13
sinα = √(12/13)= √12/√13 = √12 * √13/13 = √156/13 = √(4 * 39)/13 =
= 2√39/13
cosα = √(1 - sin²α) = √(1 - 12/13) = √(1/13) = 1/√13 = √13/13
ctgα =1/tgα = 1/2√3 = √3/(2 * 3) = √3/6
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
a)
sinα = 0,1
sin²α = (0,1)² = 0,01
1 - cos²α = 0,01
cos²α = 1 - 0,01 = 0,99
cosα = √0,99 = √(99/100) = √99/10 = √(9 * 11)/10 = 3√11/10
tgα = sinα/cosα = 0,1 : 3√11/10 = 1/10 * 10/3√11 = 1/3√11 = √11/(3 * 11) =
= √11/33
ctgα = 1/tgα = 33/√11 = 33√11/11 = 3√11
b)
cosα = 0,9
cos²α = (0,9)² = 0,81
1 - sin²α = 0,81
sin²α = 1 - 0,81 = 0,19
sinα = √0,19 = √(19/100) = √19/10
tgα = sinα/cosα = √19/10 : 9/10 = √19/10 * 10/9 = √19/9
ctgα = 1/tgα = 9/√19 = 9√19/19
c)
cosα = 1/6
cos²α = (1/6)² = 1/36
1 - sin²α = 1/36
sin²α = 1 - 1/36 = 35/36
sinα = √(35/36) = √35/6
tgα = sinα/cosα = √35/6 : 1/6 = √35/6 * 6 = √35
ctgα = 1/tgα = 1/√35 = √35/35
d)
sinα = √3/3
sin²α = (√3/3)² = 3/9 = 1/3
1 - cos²α = 1/3
cos²α = 1 - 1/3 = 2/3
cosα = √(2/3) = √2/√3 = √2 * √3/3 = √6/3
tgα = sinα/cosα = √3/3 : √6/3 = √3/3 * 3/√6 = √3/√6 = √(3/6) = √(1/2) =
= 1/√2 = √2/2
ctgα = 1/tgα = 2/√2 = 2√2/2 = √2
e)
tgα = 8/15
tg²α = (8/15)² = 64/2258
sin²α/cos²α = 64/225
225sin²α = 64cos²α = 64(1 - sin²α) = 64 - 64sin²α
225sin²α + 64sin²α = 64
289sin²α = 64
sin²α = 64/289
sinα = √(64/289) = 8/17
tgα = sinα/cosα = 8/15
sinα = 8/15 * cosα
8/17 = 8/15 * cosα
cosα = 8/17 : 8/15 = 8/17 * 15/8 = 1/17 * 15 = 15/17
ctgα = 1/tgα = 15/8 = 1 7/8
f)
tgα = √5
tg²α = (√5)² = 5
sin²α/cos²α = 5
sin²α = 5cos²α = 5(1 - sin²α) = 5 - 5sin²α
sin²α + 5sin²α = 5
6sin²α = 5
sin²α = 5/6
sinα = √(5/6) = √5/√6 = √5 * √6/6 = √30/6
cosα = √(1 - sin²α) = √(1 - 30/36) = √(6/36) = √(1/6) = √1/√6 = 1/√6 = √6/6
ctgα = 1/tgα = 1/√5 = √5/5
g)
tgα = 1/4
tg²α = sin²α/cos²α = (1/4)² = 1/16
sin²α = 1/16 * cos²α = 1/16(1 - sin²α) = 1/16 - 1/16sin²α
sin²α + 1/16sin²α = 1/16
(1 1/16)sin²α = 1/16
sin²α = 1/16 : 1 1/16 = 1/16 : 17/16 = 1/16 * 16/17 = 1/17
cosα = √(1 - sin²α) = √(1 - 1/17) = √(16/17) = 4/√17 = 4√17/17
ctgα = 1/tgα = 4
h)
tgα = 2√3
tg²α = sin²α/cos²α = (2√3)² = 4 * 3 = 12
sin²α = 12cos²α = 12(1 - sin²α) = 12 - 12sin²α
sin²α + 12sin²α = 12
13sin²α = 12
sin²α = 12/13
sinα = √(12/13)= √12/√13 = √12 * √13/13 = √156/13 = √(4 * 39)/13 =
= 2√39/13
cosα = √(1 - sin²α) = √(1 - 12/13) = √(1/13) = 1/√13 = √13/13
ctgα =1/tgα = 1/2√3 = √3/(2 * 3) = √3/6