Odpowiedź:
[tex]\frac{sin30^{\circ} * tg60^{\cirk} - cos45^{\circ}}{ctg60^{\circ}} = \frac{\frac{1}{2}*\sqrt{3}-\frac{\sqrt{2}}{2}}{\frac{1}{\sqrt3}}} = \frac{(\frac{1}{2}*\sqrt{3}-\frac{\sqrt{2}}{2})*\frac{1}{\sqrt3}}{\frac{1}{\sqrt3}*\frac{1}{\sqrt3}}} = \frac{1-\frac{\sqrt{2}}{2\sqrt{3}}}{\frac{1}{3}} =[/tex]
[tex]= (1-\frac{\sqrt{2}}{2\sqrt{3}})*3 = 3 - \frac{3\sqrt{2}}{2\sqrt{3}} = 3 - \frac{3*1,41}{2*1,73}= 3 - \frac{4,23}{3,46} = 3 - 0,95 = 2,05[/tex]
[tex]\sqrt{2} \approx 1,41[/tex]
[tex]\sqrt{3} \approx 1,73[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]\frac{sin30^{\circ} * tg60^{\cirk} - cos45^{\circ}}{ctg60^{\circ}} = \frac{\frac{1}{2}*\sqrt{3}-\frac{\sqrt{2}}{2}}{\frac{1}{\sqrt3}}} = \frac{(\frac{1}{2}*\sqrt{3}-\frac{\sqrt{2}}{2})*\frac{1}{\sqrt3}}{\frac{1}{\sqrt3}*\frac{1}{\sqrt3}}} = \frac{1-\frac{\sqrt{2}}{2\sqrt{3}}}{\frac{1}{3}} =[/tex]
[tex]= (1-\frac{\sqrt{2}}{2\sqrt{3}})*3 = 3 - \frac{3\sqrt{2}}{2\sqrt{3}} = 3 - \frac{3*1,41}{2*1,73}= 3 - \frac{4,23}{3,46} = 3 - 0,95 = 2,05[/tex]
[tex]\sqrt{2} \approx 1,41[/tex]
[tex]\sqrt{3} \approx 1,73[/tex]