Odpowiedź:
a)
[tex]S_5 = a_1*\frac{1 - q^5}{1 - q} = 6*\frac{1 - (2/3)^5}{1 - 2/3} = 6*\frac{1 - 32/243}{1/3} =[/tex] 18 * [tex]\frac{211}{243} =[/tex] [tex]\frac{3786}{243} = \frac{422}{27 } = 15 \frac{17}{27}[/tex]
--------------------------------------------------------------------------------------------------------
b ) [tex]S_{21} = a_1*n = 18*21 = 378[/tex]
-------------------------------------------------------
c ) [tex]a_2 = 10[/tex] [tex]a_4 = 20[/tex] n = 5
[tex]a_4 = a_1*q^3 = a_1*q*q^2 = a_2*q^2 \\20 = 10*q^2[/tex]q² = 2
q = √2
[tex]a_2= a_1*q[/tex]
[tex]a_1 = 10 : \sqrt{2} = 5\sqrt{2}[/tex]
więc
[tex]S_{10} = a_1 *\frac{1 - q^{10}}{1 - q} = 5\sqrt{2} *\frac{1 - (\sqrt{2})^{10} }{1 - \sqrt{2} }[/tex] [tex]= 5\sqrt{2} *\frac{1 - 2^5}{1 - \sqrt{2} } = 5\sqrt{2} *\frac{1 - 32}{1 - \sqrt{2} } = \frac{-155\sqrt{2} }{1 - \sqrt{2} } *\frac{1 + \sqrt{2} }{1 + \sqrt{2} } =[/tex] [tex]\frac{- 155\sqrt{2} -310}{1 - 2} = 155\sqrt{2} + 310[/tex]
----------------------------------------------------------------------------------------------------------
d ) [tex]a_3 = 6[/tex] [tex]a_6 = - \frac{1}{36}[/tex] n = 5
[tex]a_6 = a_3*q^3\\q^3 = a_6 : a_3 = - \frac{1}{36} : 6 = - \frac{1}{216}[/tex]
q = - [tex]\frac{1}{6}[/tex]
[tex]a_1 = a_3 : q^2 = 6 : \frac{1}{36} = 216[/tex]
[tex]S_5 = 216*\frac{1 - q^5}{1 - q} =[/tex] [tex]\frac{216 - 216*q^5}{1 - q} =[/tex][tex]\frac{216 +\frac{1}{36} }{\frac{7}{6} } = \frac{6}{7} *( 216 \frac{1}{36} )[/tex] [tex]= \frac{6}{7} *\frac{7777}{36} = \frac{1111}{6} = 185 \frac{1}{6}[/tex]
===============================================================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
a)
[tex]S_5 = a_1*\frac{1 - q^5}{1 - q} = 6*\frac{1 - (2/3)^5}{1 - 2/3} = 6*\frac{1 - 32/243}{1/3} =[/tex] 18 * [tex]\frac{211}{243} =[/tex] [tex]\frac{3786}{243} = \frac{422}{27 } = 15 \frac{17}{27}[/tex]
--------------------------------------------------------------------------------------------------------
b ) [tex]S_{21} = a_1*n = 18*21 = 378[/tex]
-------------------------------------------------------
c ) [tex]a_2 = 10[/tex] [tex]a_4 = 20[/tex] n = 5
[tex]a_4 = a_1*q^3 = a_1*q*q^2 = a_2*q^2 \\20 = 10*q^2[/tex]q² = 2
q = √2
[tex]a_2= a_1*q[/tex]
[tex]a_1 = 10 : \sqrt{2} = 5\sqrt{2}[/tex]
więc
[tex]S_{10} = a_1 *\frac{1 - q^{10}}{1 - q} = 5\sqrt{2} *\frac{1 - (\sqrt{2})^{10} }{1 - \sqrt{2} }[/tex] [tex]= 5\sqrt{2} *\frac{1 - 2^5}{1 - \sqrt{2} } = 5\sqrt{2} *\frac{1 - 32}{1 - \sqrt{2} } = \frac{-155\sqrt{2} }{1 - \sqrt{2} } *\frac{1 + \sqrt{2} }{1 + \sqrt{2} } =[/tex] [tex]\frac{- 155\sqrt{2} -310}{1 - 2} = 155\sqrt{2} + 310[/tex]
----------------------------------------------------------------------------------------------------------
d ) [tex]a_3 = 6[/tex] [tex]a_6 = - \frac{1}{36}[/tex] n = 5
[tex]a_6 = a_3*q^3\\q^3 = a_6 : a_3 = - \frac{1}{36} : 6 = - \frac{1}{216}[/tex]
q = - [tex]\frac{1}{6}[/tex]
[tex]a_1 = a_3 : q^2 = 6 : \frac{1}{36} = 216[/tex]
[tex]S_5 = 216*\frac{1 - q^5}{1 - q} =[/tex] [tex]\frac{216 - 216*q^5}{1 - q} =[/tex][tex]\frac{216 +\frac{1}{36} }{\frac{7}{6} } = \frac{6}{7} *( 216 \frac{1}{36} )[/tex] [tex]= \frac{6}{7} *\frac{7777}{36} = \frac{1111}{6} = 185 \frac{1}{6}[/tex]
===============================================================
Szczegółowe wyjaśnienie: