a)
a - krawędź rombu
H - wysokość graniastosłupa
[tex]Pp=a^{2}*sin\alpha = 12^{2}*sin30=144*\frac{1}{2}=72cm^{2}[/tex]
[tex]Pb=4*a*H=4*12*8=384cm^{2} \\\\Pc=2Pp+Pb=2*72+384=528cm^{2}[/tex]
b)
c - podstawa trójkąta równoramiennego
a, b - ramiona trójkąta
[tex]Pp=\frac{1}{2}*a*b*sin\alpha =\frac{1}{2}*6*6*sin120=18*\frac{\sqrt{3} }{2}=9\sqrt{3}\\ \\ c^{2}=a^{2} +b^{2}-2*a*b*sin\alpha =6^{2}+6^{2}-2*6*6*cos120=36+36-72 *(-\frac{1}{2})=72+36=108\\ \\ c=\sqrt{108}=6\sqrt{3}\\ \\ Pb=a*H+b*H+c*H=6*8+6*8+6\sqrt{3}*8=48+48+48\sqrt{3}=(96+48\sqrt{3})cm^{2} \\ \\ Pc=2Pp+Pb=2*9\sqrt{3}+96+48\sqrt{3}=18\sqrt{3}+48\sqrt{3}+96=(66\sqrt{3}+96 )cm^{2}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
a - krawędź rombu
H - wysokość graniastosłupa
[tex]Pp=a^{2}*sin\alpha = 12^{2}*sin30=144*\frac{1}{2}=72cm^{2}[/tex]
[tex]Pb=4*a*H=4*12*8=384cm^{2} \\\\Pc=2Pp+Pb=2*72+384=528cm^{2}[/tex]
b)
c - podstawa trójkąta równoramiennego
a, b - ramiona trójkąta
H - wysokość graniastosłupa
[tex]Pp=\frac{1}{2}*a*b*sin\alpha =\frac{1}{2}*6*6*sin120=18*\frac{\sqrt{3} }{2}=9\sqrt{3}\\ \\ c^{2}=a^{2} +b^{2}-2*a*b*sin\alpha =6^{2}+6^{2}-2*6*6*cos120=36+36-72 *(-\frac{1}{2})=72+36=108\\ \\ c=\sqrt{108}=6\sqrt{3}\\ \\ Pb=a*H+b*H+c*H=6*8+6*8+6\sqrt{3}*8=48+48+48\sqrt{3}=(96+48\sqrt{3})cm^{2} \\ \\ Pc=2Pp+Pb=2*9\sqrt{3}+96+48\sqrt{3}=18\sqrt{3}+48\sqrt{3}+96=(66\sqrt{3}+96 )cm^{2}[/tex]