Odpowiedź:
a ) 8 + 4 + 2 + ... + [tex]\frac{1}{16}[/tex]
[tex]a_1 = 8[/tex] [tex]a_2 = 4[/tex] q = [tex]\frac{a_2}{a_1} = \frac{4}{8} = \frac{1}{2}[/tex]
[tex]\frac{1}{16} = 8*( \frac{1}{2} )^{n -1}[/tex] / : 8
[tex]\frac{1}{2^4*2^3} = ( \frac{1}{2} )^{n-1}[/tex]
( [tex]\frac{1}{2} )^7 = ( \frac{1}{2} )^{n-1}[/tex] 7 = n - 1
n = 8
[tex]S_8 = 8*\frac{1 - (\frac{1}{2})^8 }{1 - \frac{1}{2} } = 16*( 1 - ( \frac{1}{2} )^8) =[/tex] [tex]16*( 1 - \frac{1}{256} ) = 16*\frac{255}{256} = \frac{255}{16} = 15 \frac{15}{16}[/tex]
=============================================================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
a ) 8 + 4 + 2 + ... + [tex]\frac{1}{16}[/tex]
[tex]a_1 = 8[/tex] [tex]a_2 = 4[/tex] q = [tex]\frac{a_2}{a_1} = \frac{4}{8} = \frac{1}{2}[/tex]
[tex]\frac{1}{16} = 8*( \frac{1}{2} )^{n -1}[/tex] / : 8
[tex]\frac{1}{2^4*2^3} = ( \frac{1}{2} )^{n-1}[/tex]
( [tex]\frac{1}{2} )^7 = ( \frac{1}{2} )^{n-1}[/tex] 7 = n - 1
n = 8
[tex]S_8 = 8*\frac{1 - (\frac{1}{2})^8 }{1 - \frac{1}{2} } = 16*( 1 - ( \frac{1}{2} )^8) =[/tex] [tex]16*( 1 - \frac{1}{256} ) = 16*\frac{255}{256} = \frac{255}{16} = 15 \frac{15}{16}[/tex]
=============================================================
Szczegółowe wyjaśnienie: