Odpowiedź:
c = 2π*R = 10 π / : 2π
R = 5
-------
R = [tex]\frac{2}{3}[/tex] h = 5 / * [tex]\frac{3}{2}[/tex]
h = 7,5
--------------
h = a*[tex]\frac{\sqrt{3} }{2}[/tex] = 7,5 / *2
a*√3 = 15 = 3*5 / : √3
a = 5√3
------------
Obwód Δ L = 3 a
L = 3*5√3 = 15√3
===================
Szczegółowe wyjaśnienie:
[tex]L = 10\pi\\oraz\\L = 2\pi r\\\\2\pi r = 10\pi \ \ \ /:2 \pi\\\\\underline{r = 5} \ - \ promie\'n \ okregu \ wpisanego \ w \ tr\'ojkat\\\\\\r = \frac{1}{3}h = \frac{a\sqrt{3}}{6}\\\\\frac{a\sqrt{3}}{6} = 5 \ \ \ |\cdot\frac{6}{\sqrt{3}}\\\\a = \frac{30}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = \frac{30\sqrt{3}}{3} = \underline{10\sqrt{3}}[/tex]
Obliczamy obwód tego trójkąta równobocznego:
[tex]Obw = 3a = 3\cdot10\sqrt{3}\\\\\boxed{Obw = 30\sqrt{3}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
c = 2π*R = 10 π / : 2π
R = 5
-------
R = [tex]\frac{2}{3}[/tex] h = 5 / * [tex]\frac{3}{2}[/tex]
h = 7,5
--------------
h = a*[tex]\frac{\sqrt{3} }{2}[/tex] = 7,5 / *2
a*√3 = 15 = 3*5 / : √3
a = 5√3
------------
Obwód Δ L = 3 a
L = 3*5√3 = 15√3
===================
Szczegółowe wyjaśnienie:
[tex]L = 10\pi\\oraz\\L = 2\pi r\\\\2\pi r = 10\pi \ \ \ /:2 \pi\\\\\underline{r = 5} \ - \ promie\'n \ okregu \ wpisanego \ w \ tr\'ojkat\\\\\\r = \frac{1}{3}h = \frac{a\sqrt{3}}{6}\\\\\frac{a\sqrt{3}}{6} = 5 \ \ \ |\cdot\frac{6}{\sqrt{3}}\\\\a = \frac{30}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = \frac{30\sqrt{3}}{3} = \underline{10\sqrt{3}}[/tex]
Obliczamy obwód tego trójkąta równobocznego:
[tex]Obw = 3a = 3\cdot10\sqrt{3}\\\\\boxed{Obw = 30\sqrt{3}}[/tex]