Rozwiązanie:
[tex]\bold{1)} \ \cos(75^{\circ})[/tex]
Korzystać będziemy ze wzoru:
[tex]$\cos(A+B)=\cos A \cos B - \sin A \sin B[/tex]
Zatem:
[tex]$\cos(75^{\circ})=\cos(30^{\circ}+45^{\circ})=\cos(30^{\circ})\cos(45^{\circ})-\sin (30^{\circ})\sin (45^{\circ})=[/tex]
[tex]$=\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}-\frac{1}{2} \cdot \frac{\sqrt{2}}{2}=\frac{\sqrt{6}-\sqrt{2}}{4}[/tex]
[tex]\bold{2)} \ \text{tg} (105^{\circ})[/tex]
[tex]$\text{tg}(A+B)=\frac{\text{tg}A+\text{tg}B}{1-\text{tg}A \cdot \text{tg}B}[/tex]
[tex]$\text{tg}(105^{\circ})=\text{tg}(60^{\circ}+45^{\circ})=\frac{\text{tg}(60^{\circ})+\text{tg}(45^{\circ})}{1-\text{tg}(60^{\circ}) \cdot \text{tg}(45^{\circ})}=[/tex]
[tex]$=\frac{\sqrt{3}+1}{1-\sqrt{3} \cdot 1}=\frac{1+\sqrt{3}}{1-\sqrt{3}}=\frac{(1+\sqrt{3})(1+\sqrt{3})}{(1-\sqrt{3})(1+\sqrt{3})}=\frac{1^2+2 \cdot 1 \cdot \sqrt{3}+(\sqrt{3})^2}{1-(\sqrt{3})^2}=[/tex]
[tex]$=\frac{1+2\sqrt{3}+3}{1-3}=\frac{4+2\sqrt{3}}{-2}=-2-\sqrt{3}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Rozwiązanie:
[tex]\bold{1)} \ \cos(75^{\circ})[/tex]
Korzystać będziemy ze wzoru:
[tex]$\cos(A+B)=\cos A \cos B - \sin A \sin B[/tex]
Zatem:
[tex]$\cos(75^{\circ})=\cos(30^{\circ}+45^{\circ})=\cos(30^{\circ})\cos(45^{\circ})-\sin (30^{\circ})\sin (45^{\circ})=[/tex]
[tex]$=\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}-\frac{1}{2} \cdot \frac{\sqrt{2}}{2}=\frac{\sqrt{6}-\sqrt{2}}{4}[/tex]
[tex]\bold{2)} \ \text{tg} (105^{\circ})[/tex]
Korzystać będziemy ze wzoru:
[tex]$\text{tg}(A+B)=\frac{\text{tg}A+\text{tg}B}{1-\text{tg}A \cdot \text{tg}B}[/tex]
Zatem:
[tex]$\text{tg}(105^{\circ})=\text{tg}(60^{\circ}+45^{\circ})=\frac{\text{tg}(60^{\circ})+\text{tg}(45^{\circ})}{1-\text{tg}(60^{\circ}) \cdot \text{tg}(45^{\circ})}=[/tex]
[tex]$=\frac{\sqrt{3}+1}{1-\sqrt{3} \cdot 1}=\frac{1+\sqrt{3}}{1-\sqrt{3}}=\frac{(1+\sqrt{3})(1+\sqrt{3})}{(1-\sqrt{3})(1+\sqrt{3})}=\frac{1^2+2 \cdot 1 \cdot \sqrt{3}+(\sqrt{3})^2}{1-(\sqrt{3})^2}=[/tex]
[tex]$=\frac{1+2\sqrt{3}+3}{1-3}=\frac{4+2\sqrt{3}}{-2}=-2-\sqrt{3}[/tex]