Odpowiedź:
[tex]a_n = \frac{2 n^4 - 1}{2 n^4 - n^3 +2 n^2 + 3} = \frac{2 - \frac{1}{n^4} }{2 - \frac{1}{n} + \frac{2}{n^2} + \frac{3}{n^4} }[/tex]
więc
[tex]\lim_{n \to \infty} a_n = \frac{2 - 0}{2 - 0 + 0 + 0} = \frac{2}{2} = 1[/tex]
-------------------------------------------------
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]a_n = \frac{2 n^4 - 1}{2 n^4 - n^3 +2 n^2 + 3} = \frac{2 - \frac{1}{n^4} }{2 - \frac{1}{n} + \frac{2}{n^2} + \frac{3}{n^4} }[/tex]
więc
[tex]\lim_{n \to \infty} a_n = \frac{2 - 0}{2 - 0 + 0 + 0} = \frac{2}{2} = 1[/tex]
-------------------------------------------------
Szczegółowe wyjaśnienie: