Odpowiedź:
[tex]a_n = \frac{n^3 - 1}{- n^2 + 6 n - 3} = \frac{n - \frac{1}{n^2} }{- 1 + \frac{6}{n} - \frac{3}{n^2} }[/tex]
więc
[tex]\lim_{n \to \infty} a_n = \frac{oo - 0}{- 1 + 0 + 0} = -[/tex] ∞
=============================
[tex]a_n = \sqrt{n + 4} - \sqrt{n} = \frac{( n + 4) - n}{\sqrt{n + 4} + \sqrt{n} } =[/tex] [tex]\frac{4}{\sqrt{n + 4} + \sqrt{n} }[/tex]
[tex]\lim_{n \to \infty} a_n = \frac{4}{[ +oo ]} = 0[/tex]
=====================
a[tex]_n = \sqrt[n]{2^n + 4^n}[/tex]
[tex]\sqrt[n]{4^n} \leq a_n \leq \sqrt[n]{2*4^n}[/tex]
[tex]\lim_{n \to \infty} \sqrt[n]{4^n} = 4[/tex] i [tex]\lim_{n \to \infty}[/tex] [tex]\sqrt[n]{2*4^n} = 1*4 = 4[/tex]
więc na mocy tw. o trzech ciągach
[tex]\lim_{n \to \infty} a_n = 4[/tex]
===============
Szczegółowe wyjaśnienie:
W z.2 korzystamy z wzoru : a - b = [tex]\frac{a^2 - b^2}{a + b}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]a_n = \frac{n^3 - 1}{- n^2 + 6 n - 3} = \frac{n - \frac{1}{n^2} }{- 1 + \frac{6}{n} - \frac{3}{n^2} }[/tex]
więc
[tex]\lim_{n \to \infty} a_n = \frac{oo - 0}{- 1 + 0 + 0} = -[/tex] ∞
=============================
[tex]a_n = \sqrt{n + 4} - \sqrt{n} = \frac{( n + 4) - n}{\sqrt{n + 4} + \sqrt{n} } =[/tex] [tex]\frac{4}{\sqrt{n + 4} + \sqrt{n} }[/tex]
więc
[tex]\lim_{n \to \infty} a_n = \frac{4}{[ +oo ]} = 0[/tex]
=====================
a[tex]_n = \sqrt[n]{2^n + 4^n}[/tex]
[tex]\sqrt[n]{4^n} \leq a_n \leq \sqrt[n]{2*4^n}[/tex]
[tex]\lim_{n \to \infty} \sqrt[n]{4^n} = 4[/tex] i [tex]\lim_{n \to \infty}[/tex] [tex]\sqrt[n]{2*4^n} = 1*4 = 4[/tex]
więc na mocy tw. o trzech ciągach
[tex]\lim_{n \to \infty} a_n = 4[/tex]
===============
Szczegółowe wyjaśnienie:
W z.2 korzystamy z wzoru : a - b = [tex]\frac{a^2 - b^2}{a + b}[/tex]