Odpowiedź:
[tex]\huge\boxed{|AB| = 3, \ \ |BC| = 6, \ \ |CD| = 6}[/tex]
Szczegółowe wyjaśnienie:
Długość odcinka o końcach w punktach:
[tex]A = (x_{A},y_{A}), \ \ B = (x_{B}, y_{B})\\\\|AB| = \sqrt{(x_{B}-x_{A})^{2}+(y_{B}-y_{A})^{2}}[/tex]
[tex]A = (1,6), \ \ B = (4,6), \ \ C = (-2,6) \ \ D = (-2,0)[/tex]
[tex]|AB| = \sqrt{(4-1)^{2}+(6-6)^{2}} =\sqrt{3^{2}+0^{2}} = \sqrt{9} =\boxed{ 3}\\\\|BC| = \sqrt{(-2-4)^{2}+(6-6)^{2}} = \sqrt{(-6)^{2}+0^{2}} = \sqrt{36}= \boxed{6}\\\\|CD| = \sqrt{[-2-(-2)]^{2} + (0-6)^{2}} = \sqrt{0^{2}+(-6)^{2}} = \sqrt{36} = \boxed{6}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]\huge\boxed{|AB| = 3, \ \ |BC| = 6, \ \ |CD| = 6}[/tex]
Szczegółowe wyjaśnienie:
Długość odcinka o końcach w punktach:
[tex]A = (x_{A},y_{A}), \ \ B = (x_{B}, y_{B})\\\\|AB| = \sqrt{(x_{B}-x_{A})^{2}+(y_{B}-y_{A})^{2}}[/tex]
[tex]A = (1,6), \ \ B = (4,6), \ \ C = (-2,6) \ \ D = (-2,0)[/tex]
[tex]|AB| = \sqrt{(4-1)^{2}+(6-6)^{2}} =\sqrt{3^{2}+0^{2}} = \sqrt{9} =\boxed{ 3}\\\\|BC| = \sqrt{(-2-4)^{2}+(6-6)^{2}} = \sqrt{(-6)^{2}+0^{2}} = \sqrt{36}= \boxed{6}\\\\|CD| = \sqrt{[-2-(-2)]^{2} + (0-6)^{2}} = \sqrt{0^{2}+(-6)^{2}} = \sqrt{36} = \boxed{6}[/tex]