Odpowiedź:
[tex]\Large\boxed{\dfrac{1-\sin13^\circ}{\cos13^\circ}-\dfrac{\cos13^\circ}{1+\sin13^\circ}=0}[/tex]
Szczegółowe wyjaśnienie:
[tex]\dfrac{1-\sin13^\circ}{\cos13^\circ}-\dfrac{\cos13^\circ}{1+\sin13^\circ}=\\[5]\dfrac{(1-\sin13^\circ)(1+\sin13^\circ)-\cos13^\circ\cdot\cos13^\circ }{\cos13^\circ\cdot(1+\sin13^\circ)}=\\[5]\dfrac{(1-\sin^213^\circ)-\cos^213^\circ}{\cos13^\circ\cdot(1+\sin13^\circ)}=\\[5]\dfrac{\cos^213^\circ-\cos^213^\circ}{\cos13^\circ\cdot(1+\sin13^\circ)}\\[5]\dfrac{0}{\cos13^\circ\cdot(1+\sin13^\circ)}=0[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Odpowiedź:
[tex]\Large\boxed{\dfrac{1-\sin13^\circ}{\cos13^\circ}-\dfrac{\cos13^\circ}{1+\sin13^\circ}=0}[/tex]
Szczegółowe wyjaśnienie:
[tex]\dfrac{1-\sin13^\circ}{\cos13^\circ}-\dfrac{\cos13^\circ}{1+\sin13^\circ}=\\[5]\dfrac{(1-\sin13^\circ)(1+\sin13^\circ)-\cos13^\circ\cdot\cos13^\circ }{\cos13^\circ\cdot(1+\sin13^\circ)}=\\[5]\dfrac{(1-\sin^213^\circ)-\cos^213^\circ}{\cos13^\circ\cdot(1+\sin13^\circ)}=\\[5]\dfrac{\cos^213^\circ-\cos^213^\circ}{\cos13^\circ\cdot(1+\sin13^\circ)}\\[5]\dfrac{0}{\cos13^\circ\cdot(1+\sin13^\circ)}=0[/tex]