" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Df : 5x - 10 ≠ 0
=> 5x ≠ 10
=> x ≠ 2
g(x) = √(3x + 2)
Df : 3x + 2 ≥ 0
=> 3x ≥ -2
=> x ≥ -2/3
jadi daerah asal dari (f + g)(x) adalah
x ≥ -2/3 dengan x ≠ 2
atau bisa juga
-2/3 ≤ x < 2 atau x > 2
b. 4f(x^2) - (g(x))^2 = .... untuk x = -2
f(x^2) = 1/(5x^2 - 10) => f(-2^2) = 1/(20 - 10) = 1/10
(g(x))^2 = 3x + 2 => (g(-2)) => 3(-2) + 2 = -4
4f(x^2) - (g(x))^2 = 4(1/10) - (-4) = 2/5 + 4 = 22/5 = 4,4
5. f(x) = 1/(x^2 - 36), g(x) = 2x + 12
a. (f . g)(x) = 1/(x^2 - 36) . (2x + 12) = 2(x + 6)/(x + 6)(x - 6) = 2/(x - 6)
b. daerah asal (f . g)(x) = (2x + 12)/(x^2 - 36)
Df : x^2 - 36 ≠ 0
(x + 6)(x - 6) ≠ 0
x ≠ -6 atau x ≠ 6