Explicación paso a paso:
20)
[tex] \frac{y}{3} = \frac{ \frac{64}{3} }{y} [/tex]
[tex] {y}^{2} = 3 \times \frac{64}{3} [/tex]
[tex] {y}^{2} = 64[/tex]
[tex]y = \sqrt{64} [/tex]
[tex]y = 8[/tex]
21)
-20 1/4
= ( 4×-20 + 1)/4
= -81/4
[tex] \frac{ - \frac{81}{4} }{z} = \frac{z}{ - 4} [/tex]
[tex] - 4 \times - \frac{81}{4} = {z}^{2} [/tex]
[tex]81 = {z}^{2} [/tex]
[tex] \sqrt{81} = z[/tex]
[tex]9 = z[/tex]
22)
[tex] \frac{w}{5} = \frac{125}{w} [/tex]
[tex] {w}^{2} = 5 \times 125[/tex]
[tex] {w}^{2} = 625[/tex]
[tex]w = \sqrt{625} [/tex]
[tex]w = 25[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Explicación paso a paso:
20)
[tex] \frac{y}{3} = \frac{ \frac{64}{3} }{y} [/tex]
[tex] {y}^{2} = 3 \times \frac{64}{3} [/tex]
[tex] {y}^{2} = 64[/tex]
[tex]y = \sqrt{64} [/tex]
[tex]y = 8[/tex]
21)
-20 1/4
= ( 4×-20 + 1)/4
= -81/4
[tex] \frac{ - \frac{81}{4} }{z} = \frac{z}{ - 4} [/tex]
[tex] - 4 \times - \frac{81}{4} = {z}^{2} [/tex]
[tex]81 = {z}^{2} [/tex]
[tex] \sqrt{81} = z[/tex]
[tex]9 = z[/tex]
22)
[tex] \frac{w}{5} = \frac{125}{w} [/tex]
[tex] {w}^{2} = 5 \times 125[/tex]
[tex] {w}^{2} = 625[/tex]
[tex]w = \sqrt{625} [/tex]
[tex]w = 25[/tex]