Respuesta:
El binomio al cubo esta dentro de los productos notables!
Ejemplo !
( x + y )^3
= x^3 + 3.x^2.y + 3.x. y^2 + y^3
Solución al problema !
[tex] {( {3m}^{4} - {4m}^{3}n })^{3} [/tex]
[tex] { {(3m}^{4} )}^{3} - 3. {( {3m}^{4} }) ^{2} . {4m}^{3} n + 3. {3m}^{4} . {( {4m}^{3} n})^{2} - {( {4m}^{3}n })^{3} [/tex]
[tex] {27m}^{12} - 3. {9m}^{8} . {4m}^{3} n + {9m}^{4} .16 {m}^{6} {n}^{2} - 64 {m}^{9} {n}^{3} [/tex]
[tex] = {27m}^{12} - 108 {m}^{11} n + 144 {m}^{10} {n}^{2} - {64m}^{9} {n}^{3} [/tex]
Saludos
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
El binomio al cubo esta dentro de los productos notables!
Ejemplo !
( x + y )^3
= x^3 + 3.x^2.y + 3.x. y^2 + y^3
Solución al problema !
[tex] {( {3m}^{4} - {4m}^{3}n })^{3} [/tex]
[tex] { {(3m}^{4} )}^{3} - 3. {( {3m}^{4} }) ^{2} . {4m}^{3} n + 3. {3m}^{4} . {( {4m}^{3} n})^{2} - {( {4m}^{3}n })^{3} [/tex]
[tex] {27m}^{12} - 3. {9m}^{8} . {4m}^{3} n + {9m}^{4} .16 {m}^{6} {n}^{2} - 64 {m}^{9} {n}^{3} [/tex]
[tex] = {27m}^{12} - 108 {m}^{11} n + 144 {m}^{10} {n}^{2} - {64m}^{9} {n}^{3} [/tex]
Saludos