Jawab:
Penjelasan dengan langkah-langkah:
[tex]^{8} log 32 = ^{2^3} log 2^{5} = (\frac{5}{3}) ^2 log 2 = (\frac{5}{3}) (1) = (\frac{5}{3})[/tex]
Jawaban:
[tex]\displaystyle\sf~ \frac{5}{3}[/tex]
Ingat!! sifat logaritma berikut:
[tex]\boxed{\begin{aligned} \displaystyle\sf~ {}^{ {a}^{n} }log~ {b}^{m} & = \displaystyle\sf~ \frac{m}{n}. {}^{a} log~ b \\ \\ \displaystyle\sf~ {}^{a}log~a & = \displaystyle\sf~1 \end{aligned}}[/tex]
maka,
[tex]\begin{aligned}\displaystyle\sf~ {}^{8} log~32 & = \displaystyle\sf~ {}^{ {2}^{3} }log~ {2}^{5} \\ \\ & = \displaystyle\sf~ \frac{5}{3}. ~ \cancel{{}^{2}log~2} \\ \\ & = \displaystyle\sf~ \frac{5}{3} \end{aligned}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Jawab:
Penjelasan dengan langkah-langkah:
[tex]^{8} log 32 = ^{2^3} log 2^{5} = (\frac{5}{3}) ^2 log 2 = (\frac{5}{3}) (1) = (\frac{5}{3})[/tex]
Jawaban:
[tex]\displaystyle\sf~ \frac{5}{3}[/tex]
Penjelasan dengan langkah-langkah:
Ingat!! sifat logaritma berikut:
[tex]\boxed{\begin{aligned} \displaystyle\sf~ {}^{ {a}^{n} }log~ {b}^{m} & = \displaystyle\sf~ \frac{m}{n}. {}^{a} log~ b \\ \\ \displaystyle\sf~ {}^{a}log~a & = \displaystyle\sf~1 \end{aligned}}[/tex]
maka,
[tex]\begin{aligned}\displaystyle\sf~ {}^{8} log~32 & = \displaystyle\sf~ {}^{ {2}^{3} }log~ {2}^{5} \\ \\ & = \displaystyle\sf~ \frac{5}{3}. ~ \cancel{{}^{2}log~2} \\ \\ & = \displaystyle\sf~ \frac{5}{3} \end{aligned}[/tex]